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Lesson 09 Outline

 Problem definition and motivations

 Simplified collision model

 Impulse based collision resolution
 Friction-less collision resolution
 Algebraic collision resolution for Coulomb friction

 Linear and angular joint formulations

 Demos / tools / libs



       Simplified collision model



    

Contact Types

 Bodies either collide, rest or separate depending 
on their relative velocity of contact points
 Assuming no rotational motion all 3 collision scenarios are:
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Simplified collision model

 Perfect rigidity
 Bodies are perfectly rigid. There are no plastic or elastic 

deformations, where kinetic energy is dissipated. Thus our 
impact models must artificially decrease the kinetic energy

 Very short collision interval
 We model highly elastic behavior, making the collision 

interval ∆t very short requiring the repulsive forces to be 
very strong, to maintain the non-penetration constraint.

 Direct velocity change
 We need to integrate response forces during the collision 

interval into impulses and change objects velocities directly, 
causing discontinuities of motion.



    

Simplified collision model

 Non-impulsive forces are ignored
 We can neglect all non-impulsive forces (e.g. gravity), 

because they are too small compared to the impulsive 
forces and have no time to accumulate during collision

 Point contact
 We reduce the contact region to a set of point contacts 

treated either as a sequence of single collisions or as a 
simultaneous multiple impact similar to resting contact 

 Constant state
 We assume position, orientation, inertia tensor, contact 

point and contact normal constant, since their change 
during the collision is negligible. Velocities change strongly



      Impulse based Collision Resolution



    

Collision Resolution

 Rigid body collision resolution is described as 
Collision Laws composed of

 Impact Model
 Describes rules which preserve the non-penetration 

constraints of colliding bodies

 Friction Model - is responsible for creating 
frictional effects as
 Sticking – bodies rest on each other due to friction forces
 Rolling – bodies start to roll due to friction forces
 Sliding – bodies slow down sliding due to friction forces



    

Collision Resolution Strategies

 Algebraic Collision Resolution
 Final velocities (impulse) are calculated using only algebraic 

relations between pre and post collision variables 
(velocities, energies… ). No numerical ODE solvers → fast

 Incremental Collision Resolution
 Evolution of the impulsive forces are described with some 

(ordinary) differential equation with initial and final 
conditions formed for compression and restitution phases.

 Full Deformation Collision Resolution
 Most accurate collision laws accounting with subtle stress 

and strain processes during the impact. Usually solved using 
finite element methods. Slow, not suitable for real-time apps.



    

Impact Model

 In real world objects are never perfectly rigid. 
 First, their shape is compressed.
 If they are elastic their shape is then restituted.
 If they are plastic their shape is then plasticlly deformed.

 Impact model as a part of some collision law
 Determines the post-collision velocities (positions, 

orientations… ) which prevent bodies to penetrate.
 Models as realistic as possible the process during the 

compression and restitution.

 Time of maximum compression (t
m
)

 Time when compression ends and restitution starts.
 Time when repulsive forces have maximal length



    

Impact Model
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Newton’s Impact Model

 Newton’s Impact Model states simple algebraic 
linear relation between
 Pre-collision relative normal velocity u

n
(t

0
)

 Post-collision relative normal velocity u
n
(t)

 Based on coefficient of restitution ε
n

 Formally: u
n
(t) = -ε

n
u

n
(t

0
)   ≡   nTu(t) = -ε

n
nTu(t

0
)

 Main drawbacks
 it “blindly” finds some impulse, which cancels the relative 

velocity, but have no idea about restitution force 
accumulation during the compression and restitution phase

 Can add kinetic energy during collision.



    

Other Impact Models

 Poisson’s Impact Model
 Total impulse applied during compression j

n
(t

m
) is proportional 

to the impulse applied during restitution j
n
(t1) − j

n
(t

m
)

 Formally: j
n
(t

1
) − j

n
(t

m
) = ε

n
j

n
(t

m
)

 In friction-less case it is equal to Newton's model

 Stronge’s Impact Model
 Directly relates the work of repulsive forces during 

compression W
n
(t

m
) and restitution W

n
(t

1
) - W

n
(t

m
)

 Formally: W
n
(t

1
) - W

n
(t

m
) = -ε2

n
W

n
(t

m
)

 Kinetic energy can not be increased
 Coefficient of normal restitution ε

n
 is a property of material.



    

Coulomb Friction Model

 In the real-world, microscopic interaction between 
colliding surfaces exerts frictional forces.
 This process depends on many different factors, as 

microscopic structure of the surfaces, relative velocity, 
contact geometry, and other material properties.

 Assume f is the repulsive force between bodies 
acting on contact point p and u is relative velocity

 Both f and u can be split into
 Normal components (fn, un) parallel to contact normal

 Tangential components (ft, ut) being inside contact plane

 f = fn + ft and u = un + ut



    

Coulomb Friction Model

 Coulomb Friction Law
 Friction force has opposite direction to relative tangential 

velocity and is proportional to normal repulsive force.
 If the relative tangential velocity vanishes (is zero), we know 

only that the length of frictional component is less than µ 
times to the normal component.

 µ is the coefficient of friction and depends only on material

 Sliding:   ut  != 0  →  ft = -µ|fn|ut / |ut| →  |ft| = µ|fn|

 Sticking: ut == 0  →  |ft| ≤ µ|fn|

 In both cases |ft(t)| ≤ µ|fn(t)| thus for any 
direction friction force must lie in the friction cone



    

Coulomb Friction Model

Δut

ΔunΔu

f

ft

fn

Contact plane

Coulomb Friction
Cone

 Similar relation |jt| ≤ µ|jn| holds for impulses
 |jt| = |∫t

t0
ft(λ)dλ| ≤ ∫t

t0
|ft(λ)|dλ ≤ µ∫t

t0
|ft(λ)|dλ = µ|jn|



    

Impulse base Collision Scenario
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 Collision Frame
 Origin is the contact point
 Z axis is the contact normal

 Relative velocity u on contact 
point is:  u = u

1
 - u

2

 Local body positions of 
contact point are:  r

1
 and r

2
 

 Velocities are changed during 
collision due to applying 
collision impulses (+j) and (-j)



    

Collision Impulse

 Collision Impulse j is the time integral of the 
repulsive force f over the collision interval (t

0
, t)

 j = j(t) := ∫t
to

f(λ)dλ

 We define a delta operator “Δ” which for a given 
function ”Ω” calculates the integral of its time 
derivative Ω' (= dΩ/dt) over collision interval (t

0
, t)

 Δ(Ω) := ∫t
to

Ω'(λ)dλ = Ω(t) - Ω(t
0
)

 Due to Newton’s Third (action-reaction) Law 
during the collision there are finite (but huge) 
repulsive forces which together with the opposite 
reactive forces are pushing bodies apart



    

Collision Impulse

 Suppose some repulsive force +f (-f) pushes first  
(second) body at contact point p

 We can express f using Newton-Euler equation

(+f) = P'
1
 = (M

1 
v

1
)'               r

1
 x (+f) = L'

1
 = (J

1 
ω

1
)'

(-f) = P'
2
 = (M

2 
v

2
)'              r

2
 x (-f) = L'

2
 = (J

2 
ω

2
)'

 Using the “Δ” operator we can express impulse j

(+j) = ΔP
1
 = M

1 
Δv

1
               r

1
 x (+j) = ΔL

1
 = J

1 
Δω

1

(-j) = ΔP
2
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2 
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2
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2
 x (-j) = ΔL

2
 = J

2 
Δω

2



    

Collision Impulse

 The velocity change due to applying an impulse is

Δv
1 
= M

1
-1 (+j) 

 
                   Δω

1 
= J

1
-1 (r

1
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Δv
2 
= M

2
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2 
= J

2
-1 (r

2
 x (-j))

 If we express current velocities u
1
, u

2
 and their 

”change” ∆u
1
, ∆u

2
 at the contact point p(t)

u
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 = v

1
 + ω
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Collision Impulse

 The final ”change” of velocities after the collision 
 Δu

1
 = M

1
-1 (+j) + J

1
-1 (r

1
 x (+j)) x r

1 
= … = (M

1
-1 1 + r

1
xJ

1
-1r

1
x)(+j) = K

1
(+j)

 Δu
2
 = M

2
-1 (-j) + J

2
-1 (r

2
 x (-j)) x r

2 
= … = (M

2
-1 1 + r

2
xJ

2
-1r

2
x)(-j) = K

2
(-j)

 Final impulse-based collision equation is

 ∆u = ∆u
1
 - ∆u

2
 = K

1
(+j) - K

2
(-j) = (K

1
 + K

2
)j = K j(t)

 K
1
 and K

2
 are “Collision Matrices” of body 1 and 2

 K is “Relative Collision Matrix” - symmetric positive definite

 Impulse-momentum equation is thus

 j = K-1 ∆u = K-1(u(t)-u(t
0
))

 u(t) = u(t0) + K j(t)



    

Friction-less Collision Resolution

 Using Newton's impact model collision impulse is
 Kj = ∆u = u(t) - u(t

0
)    and    j = |j|j~

 nTK|j|j~ = nTu(t) - nTu(t
0
) = -ε

n
nTu(t

0
) - nTu(t

0
) = -(1 + ε

n
)nTu(t

0
)

 |j| = -(1 + ε
n
)nTu(t

0
) / nTKj~

 j~ is unit direction vector of impulse (parallel with impulse)

 Collision impulse is related to pre-collision velocity
 In friction-less case repulsive forces acts only in the normal 

direction (to stop penetration), thus impulse is parallel to 
contact normal: j~(t) = n

 jt  = ∣jt ∣n =
− 1n n

T ut 0

nT K n
n



    

Collision Resolution with Friction

 Considering friction we don’t know the direction 
of the impulse.

 Any collision impulse must be admissible
 It must preserve non-penetration, satisfy the friction cone 

condition and dissipate energy

 Friction cone Test
 j(t) = jn(t) + jt(t)      and     jn(t) = nTj(t)n

 |j(t) - nTj(t)n| = |jt(t)| ≤ µ|jt(t)| = nTj(t)

 test(j) = |j – nT j n| - nTj(t)
 If test(j) ≤ 0 → impulse is in friction cone
 If test(j) > 0 → impulse is not in friction cone



    

Algebraic Resolution Law I

 Given some positive real c and any vectors A, B we 
define “projection” function “kappa” as

 We define impulses P
I
 P

II
 and P

 Plastic sliding

 Plastic sticking

 Predicted impulse

 Final impulse is

PI =
− 1n n

T u t 0

nT K n
n =

−nT u t 0

nT K n
n

PII = K− 1u t −u t 0 = −K−1 u t 0

P = 1n  PI1t PII−PI 

j =  1n  PI  P II−PI   = { 1t  test P0
kappa 1n , PI , PII  test P0}

kappac , A , B = c nT A
∣B−nT B n∣nT B−A 



    
Joint Formulations

Linear Angular



    

Linear and Angular Joints

 3 basic types of Linear joints 
 0,1,2,3 DOF for relative linear motion
 Angular motion is unconstrained (= 3 angular DOF) 

 3 basic types of Angular joints
 0,1,2,3 DOF for relative angular motion
 Linear motion is unconstrained (= 3 linear DOF) 

 Any 0-6 DOF joint constraint can be constructed as 
a combination of one linear and one angular joint
 Ball Joint = 0 linear and 3 angular DOF (= 3 DOF)
 Hinge Joint = 0 linear and 1 angular DOF (= 1 DOF)
 Point on Plane Joint = 2 linear and 3 angular DOF (= 5 DOF)
 Other joints …



    

0-DOF Linear Joint

 0 linear DOF = Relative linear motion of bodies is 
fully constrained at some joint point p
 Let p

A
 and p

B
 be on bodies A and B where the joint is applied.

 To satisfy this joint, distance between p
A
 and p

B
 

should be zero (within tolerance):  |p
A
 – p

B
| → 0

 Suppose at t
0
 the joint is satisfied. After Δt of free motion 

distance d = p
A
 – p

B
 can become non-zero.

 Simplifying the relative motion of p
A
 and p

B
 is linear their 

relative velocity is simply Δu = d / Δt

 From Impulse-momentum equation

 j = K-1 ∆u = K-1 (d / ∆t) +j -j

d
p

A
p

BA

B



    

1-DOF Linear Joint

 1 linear DOF = Relative linear motion of bodies is 
allowed along some line defined in one body
 Let l

A
 = (c

A
, a

A
) be the allowed line on A and p

B
 joint point on B

 To satisfy this joint distance between l
A
 and p

B
 

should be zero: d(l
A
, p

B
) → 0

 Similarly to previous joint we find the distance 
vector d between l

A
 and p

B
 and compute impulse

 j = K-1 ∆u = K-1 (d / ∆t)



    

2-DOF Linear Joint

 2 linear DOF = Relative linear motion of bodies is 
allowed along some plane defined in one body
 Let β

A
 = (c

A
, n

A
) be the allowed plane on A; p

B
 joint point on B

 To satisfy this joint distance between β
A
 and p

B
 

should be zero: d(β
A
, p

B
) → 0

 Similarly to previous joint we find the distance 
vector d between β

A
 and p

B
 and compute impulse

 j = K-1 ∆u = K-1 (d / ∆t)



    

3-DOF Linear Joint

 3 linear DOF = Relative linear motion of bodies is 
unconstrained.

 We do not need to apply any impulse here
 Assuming 3 angular DOF, the proposed joint has all DOF → 

Both relative linear and angular motion of bodies is 
unconstrained → there is no constraint at all. Bodies can 
freely move.



    

0-DOF Angular Joint
 0 angular DOF = Relative angular motion of bodies 

is fully constrained
 Let q

A0
 and q

B0
 be initial orientation of A and B

 Relative orientation of A and B is Δq = (q-1
B0 

q
B
)-1(q-1

A0 
q

A
)

 Δq is converted into axis-angle notation (a, α)

 To satisfy this joint relative orientation Δq should 
be zero: Δq → 0
 If relative angular motion is linearized relative angular 

velocity ω = (ω
A
 - ω

B
) is proportional to the angle α along 

direction a during Δt: ω = α.a / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums: L
A
 += +ΔL and L

B
 += -ΔL



    

1-DOF Angular Joint

 1 angular DOF = Bodies are allowed to rotate 
around one common axis (defined in both bodies)
 Let a

A
 and a

B
 be the common unit axis in body A and B 

 Define the relative angular axis change as d = a
A
 x a

B

 Angular velocity change is proportional to d

 To satisfy this joint relative orientation change d 
should be zero: d → 0
 Similarly to previous joint relative angular velocity ω = d / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums:  L
A
 += +ΔL and L

B
 += -ΔL



    

2-DOF Angular Joint

 2 angular DOF = Bodies are allowed to rotate 
around two linearly independent axes.
 Let a

A
 and b

B
 be unit rotation axes in body A and B 

 Define rotation change axis as c = a
A
 x b

B

 Angle φ(t) = arccos(a
A
(t) , b

B
(t)) between a

A
 and b

B
 must be 

constant during simulation
 Relative orientation change is d(t) = (φ(t) – φ(0)) c

 To satisfy this joint relative orientation change d 
should be zero: d → 0
 Similarly to previous joint, relative angular velocity ω = d / Δt

 Angular momentum change is: ΔL = (J-1
1
 + J-1

2
)-1 ω

 Change angular momentums:  L
A
 += +ΔL and L

B
 += -ΔL



    

3-DOF Angular Joint

 3 angular DOF = Relative angular motion of bodies 
is unconstrained.

 We do not need to change angular momentum
 Assuming 3 linear DOF, the proposed joint has all DOF → Both 

relative linear and angular motion of bodies is 
unconstrained → there is no constraint at all. Bodies can 
freely move.



    

The End


