
Ray Tracing Performance

Zero to Millions in 45 Minutes

Gordon Stoll, Intel

Goals for this talk

• Goals
– point you toward the current state-of-the-art (“BKM”)

• for non-researchers: off-the-shelf performance

• for researchers: baseline for comparison

– get you interested in poking at the problem

• Non-Goals
– present lowest-level details of kernels

– present “the one true way”

Acceleration Structures

• BKM is to use a kD-tree (AA BSP)

• Previous BKM was to use a uniform grid
– Only scheme with comparable speed

– Performance is not robust

– No packet tracing algorithm

• Other grids, octrees, etc…just use a kD-tree.

• Don’t use bounding volume hierarchies.

kD-Trees

kD-Trees

kD-Trees

kD-Trees

Advantages of kD-Trees

• Adaptive
– Can handle the “Teapot in a Stadium”

• Compact
– Relatively little memory overhead

• Cheap Traversal
– One FP subtract, one FP multiply

Take advantage of advantages

• Adaptive
– You have to build a good tree

• Compact
– At least use the compact node representation (8-byte)

– You can’t be fetching whole cache lines every time

• Cheap traversal
– No sloppy inner loops! (one subtract, one multiply!)

“Bang for the Buck” (!/$)

A basic kD-tree implementation will go pretty fast…

…but extra effort will pay off big.

Fast Ray Tracing w/ kD-Trees

• Adaptive

• Compact

• Cheap traversal

Building kD-trees

• Given:
– axis-aligned bounding box (“cell”)

– list of geometric primitives (triangles?) touching cell

• Core operation:
– pick an axis-aligned plane to split the cell into two parts

– sift geometry into two batches (some redundancy)

– recurse

Building kD-trees

• Given:
– axis-aligned bounding box (“cell”)

– list of geometric primitives (triangles?) touching cell

• Core operation:
– pick an axis-aligned plane to split the cell into two parts

– sift geometry into two batches (some redundancy)

– recurse

– termination criteria!

“Intuitive” kD-Tree Building

• Split Axis
– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

“Hack” kD-Tree Building

• Split Axis
– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques stink.

“Hack” kD-Tree Building

• Split Axis
– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques stink. Don’t use them.

“Hack” kD-Tree Building

• Split Axis
– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques stink. Don’t use them.
– I mean it.

Building good kD-trees

• What split do we really want?
– Clever Idea: The one that makes ray tracing cheap

– Write down an expression of cost and minimize it

– Cost Optimization

• What is the cost of tracing a ray through a cell?

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Splitting with Cost in Mind

Split in the middle

• Makes the L & R probabilities equal

• Pays no attention to the L & R costs

Split at the Median

• Makes the L & R costs equal

• Pays no attention to the L & R probabilities

Cost-Optimized Split

• Automatically and rapidly isolates complexity

• Produces large chunks of empty space

Building good kD-trees

• Need the probabilities
– Turns out to be proportional to surface area

• Need the child cell costs
– Simple triangle count works great (very rough approx.)

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

 = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

Termination Criteria

• When should we stop splitting?
– Another Clever idea: When splitting isn’t helping any more.

– Use the cost estimates in your termination criteria

• Threshold of cost improvement
– Stretch over multiple levels

• Threshold of cell size
– Absolute probability so small there’s no point

Building good kD-trees

• Basic build algorithm
– Pick an axis, or optimize across all three

– Build a set of “candidates” (split locations)

• BBox edges or exact triangle intersections

– Sort them or bin them

– Walk through candidates or bins to find minimum cost split

• Characteristics you’re looking for
– “stringy”, depth 50-100, ~2 triangle leaves, big empty cells

Just Do It

• Benefits of a good tree are not small
– not 10%, 20%, 30%...

– several times faster than a mediocre tree

Building kD-trees quickly

• Very important to build good trees first
– otherwise you have no basis for comparison

• Don’t give up cost optimization!
– Use the math, Luke…

• Luckily, lots of flexibility…
– axis picking (“hack” pick vs. full optimization)

– candidate picking (bboxes, exact; binning, sorting)

– termination criteria (“knob” controlling tradeoff)

Building kD-trees quickly

• Remember, profile first! Where’s the time going?
– split personality

• memory traffic all at the top (NO cache misses at bottom)

– sifting through bajillion triangles to pick one split (!)

– hierarchical building?

• computation mostly at the bottom

– lots of leaves, need more exact candidate info

– lazy building?

• change criteria during the build?

Fast Ray Tracing w/ kD-Trees

• adaptive
– build a cost-optimized kD-tree w/ the surface area heuristic

• compact

• cheap traversal

What’s in a node?

• A kD-tree internal node needs:
– Am I a leaf?

– Split axis

– Split location

– Pointers to children

Compact (8-byte) nodes

• kD-Tree node can be packed into 8 bytes
– Leaf flag + Split axis

• 2 bits

– Split location

• 32 bit float

– Always two children, put them side-by-side
• One 32-bit pointer

Compact (8-byte) nodes

• kD-Tree node can be packed into 8 bytes
– Leaf flag + Split axis

• 2 bits

– Split location

• 32 bit float

– Always two children, put them side-by-side
• One 32-bit pointer

• So close! Sweep those 2 bits under the rug…

No Bounding Box!

• kD-Tree node corresponds to an AABB

• Doesn’t mean it has to *contain* one
– 24 bytes

– 4X explosion (!)

Memory Layout

• Cache lines are much bigger than 8 bytes!
– advantage of compactness lost with poor layout

• Pretty easy to do something reasonable
– Building depth first, watching memory allocator

Other Data

• Memory should be separated by rate of access
– Frames

– << Pixels

– << Samples [Ray Trees]

– << Rays [Shading (not quite)]

– << Triangle intersections

– << Tree traversal steps

• Example: pre-processed triangle, shading info…

Fast Ray Tracing w/ kD-Trees

• adaptive
– build a cost-optimized kD-tree w/ the surface area heuristic

• compact
– use an 8-byte node

– lay out your memory in a cache-friendly way

• cheap traversal

kD-Tree Traversal Step

split

t_split
t_min

t_max

kD-Tree Traversal Step

split

t_split t_min

t_max

kD-Tree Traversal Step

split

t_split

t_min

t_max

kD-Tree Traversal Step

Given: ray P & iV (1/V), t_min, t_max, split_location, split_axis

t_at_split = (split_location - ray->P[split_axis]) * ray_iV[split_axis]

if t_at_split > t_min

need to test against near child

If t_at_split < t_max

need to test against far child

Optimize Your Inner Loop

• kD-Tree traversal is the most critical kernel
– It happens about a zillion times

– It’s tiny

– Sloppy coding will show up

• Optimize, Optimize, Optimize
– Remove recursion and minimize stack operations

– Other standard tuning & tweaking

kD-Tree Traversal

while (not a leaf)

t_at_split = (split_location - ray->P[split_axis]) * ray_iV[split_axis]

if t_split <= t_min

continue with far child // hit either far child or none

if t_split >= t_max

continue with near child // hit near child only

// hit both children

push (far child, t_split, t_max) onto stack

continue with (near child, t_min, t_split)

Can it go faster?

• How do you make fast code go faster?

• Parallelize it!

Ray Tracing and Parallelism

• Classic Answer: Ray-Tree parallelism
– independent tasks

– # of tasks = millions (at least)

– size of tasks = thousands of instructions (at least)

• So this is wonderful, right?

Parallelism in CPUs

• Instruction-Level Parallelism (ILP)
– pipelining, superscalar, OOO, SIMD

– fine granularity (~100 instruction “window” tops)

– easily confounded by unpredictable control

– easily confounded by unpredictable latencies

• So…what does ray tracing look like to a CPU?

No joy in ILP-ville

• At <1000 instruction granularity, ray tracing is
anything but “embarrassingly parallel”

• kD-Tree traversal (CPU view):
1) fetch a tiny fraction of a cache line from who knows where

2) do two piddling floating-point operations

3) do a completely unpredictable branch, or two, or three

4) repeat until frustrated

PS: Each operation is dependent on the one before it.

PPS: No SIMD for you! Ha!

Split Personality

• Coarse-Grained parallelism (TLP) is perfect
– millions of independent tasks

– thousands of instructions per task

• Fine-Grained parallelism (ILP) is awful
– look at a scale <1000 of instructions

• sequential dependencies

• unpredictable control paths

• unpredictable latencies

• no SIMD

Options

• Option #1: Forget about ILP, go with TLP
– improve low-ILP efficiency and use multiple CPU cores

• Option #2: Let TLP stand in for ILP
– run multiple independent threads (ray trees) on one core

• Option #3: Improve the ILP situation directly
– how?

• Option #4: …

…All of the above!

• multi-core CPUs are already here (more coming)
– better performance, better low-ILP performance

– on the right performance curve

• multi-threaded CPUs are already here
– improve well-written ray tracer by ~20-30%

• packet tracing
– trace multiple rays together in a packet

– bulk up the inner loop with ILP-friendly operations

Packet Tracing

• Very, very old idea from vector/SIMD machines
– Vector masks

• Old way
– if the ray wants to go left, go left

– if the ray wants to go right, go right

• New way
– if any ray wants to go left, go left with mask

– if any ray wants to go right, go right with mask

Key Observations

• Doesn’t add “bad” stuff
– Traverses the same nodes

– Adds no global fetches

– Adds no unpredictable branches

• What it does add
– SIMD-friendly floating-point operations

– Some messing around with masks

Result: Very robust in relation to single rays

How many rays in a packet?

• Packet tracing gives us a “knob” with which to
adjust computational intensity.

• Do natural SIMD width first

• Real answer is potentially much more complex
– diminishing returns due to per-ray costs

– lack of coherence to support big packets

– register pressure, L1 pressure

• Makes hardware much more likely/possible

Fast Ray Tracing w/ kD-Trees

• Adaptive
– build a cost-optimized tree (w/ surface area heuristic)

• Compact
– use an 8-byte node

– lay out your memory in a cache-friendly way

• Cheap traversal
– optimize your inner loop

– trace packets

Getting started…

• Read PBRT (yeah, I know, it’s 1300 pages)
– great book, pretty decent kD-tree builder

• Read Ingo Wald’s thesis
– lots of coding details for this stuff

• Track down the interesting references

• Learn SIMD programming (e.g. SSE intrinsics)

• Use a profiler.

Getting started…

• Read PBRT (yeah, I know, it’s 1300 pages)
– great book, pretty decent kD-tree builder

• Read Ingo Wald’s thesis
– lots of coding details for this stuff

• Track down the interesting references

• Learn SIMD programming (e.g. SSE intrinsics)

• Use a profiler. I mean it.

If you remember nothing else

• “Rays per Second” is measured in millions.

