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The Rendering Equation
Philip Dutré

Course 4. State of the Art in Monte Carlo Global 
Illumination
Sunday, Full Day, 8:30 am - 5:30 pm
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OverviewOverview

• Rendering Equation

• Path tracing

• Path Formulation

• Various path tracing algorithms

This part of the course will cover in detail the rendering equation and how to reason 
about it.

We will start by repeating a few concepts seen before, namely the definition of the 
BRDF.
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• Goal: 
• Describe radiance distribution in the scene

• Assumptions:
• Geometric Optics

• Achieve steady state (equilibrium)

Light TransportLight Transport
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Rendering Equation (RE)Rendering Equation (RE)

• RE describes energy transport in a scene

• Input:
– light sources
– geometry of surfaces
– reflectance characteristics of surfaces

• Output: value of radiance at all surface points 
and in all directions
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MaterialsMaterials

Ideal diffuse
(Lambertian)

Ideal specular

Directional
Diffuse(“glossy”)
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Rendering EquationRendering Equation
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Rendering EquationRendering Equation
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Rendering EquationRendering Equation
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Radiance evaluationRadiance evaluation
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This is an illustration of the recursive nature of the rendering equation.

All radiance values incident at surface point x are themselves outgoing 
radiance values. We have to trace back the path they arrive from. This 
means tracing a ray from x in the direction of the incoming radiance. This 
results in some surface point, and the incoming radiance along the original 
direction now simply equals the outgoing radiance at this new point.

The problem is then stated recursively, since this new radiance value is also 
described exactly by the rendering equation.

This process will continue until the paths are traced back to the light source. 
Then we can pick up the self- emitted radiance, take into account all possible 
cosine factors and possible BRDF values along the path, perform the 
necessary integration at each surface point, to finally arrive at the original 
radiance value we are interested in.
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Radiance evaluationRadiance evaluation
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Radiance evaluationRadiance evaluation
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Radiance EvaluationRadiance Evaluation

Reconstructing all possible paths between the light sources and the point for 
which one wants to compute a radiance value is the core business of all 
global illumination algorithms.

This photograph was taken on a sunny day in New Mexico. It is shown here 
just to illustrate some of the unexpected light paths one might have to 
reconstruct when computing global illumination solutions.

The circular figure on the left wall is the reflection of the lid on the trash- can. 
The corresponding light paths (traced from the sun), hit the lid, then hit the 
wall, and finally end up in our eye. For a virtual scene, these same light 
paths need to be followed to reconstruct the reflection.
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Radiance EvaluationRadiance Evaluation

This photograph shows a similar effect.

We see shimmering waves on the bottom of the river (a similar effect is 
noticable in swimming pools). Light rays from the sun hit the transparent and 
wavy surface of the water, then are reflected on the bottom of the river, are 
refracted again by the water, the they hit our eye.
The complex pattern of light rays hitting the bottom, together with the 
changing nature of the surface of the water, causes these shimmering 
waves.

This effect is known as a caustic: light rays are reflected or refracted in 
different patterns and form images of the light source: the circular figure in 
the previous photograph, or the shimmering waves in this one.
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(www.renderpark.be)
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Path formulationPath formulation

• Transfer function
– All possible paths
– … of any length
– … any material reflections
– … no light transport neglected

path
paths
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Path formulationPath formulation

– Many different light paths contribute to single 
radiance value

• many paths are unimportant

– Tools we need:
• generate the light paths
• sum all contributions of all light paths
• clever techniques to select important paths

So, many different light paths, all originating at the light sources, will 
contribute to the value of the radiance at a single surface point.

Many of these light paths will be unimportant. Imagine a light switched on on 
the 1st floor of a building. You can imagine that some photons will travel all 
the way up to the 4th floor, but it is very unlikely that this will contribute 
significantly to the illumination on the 4th floor. However, we cannot exclude 
these light paths from consideration, since it might happen that the 
contribution is significant after all.

So, one of the mechanisms that a good global illumination algorithm needs is 
how to select the important paths from amongst many different possibilities, 
or at least how to try to put more computational effort into the ones that are 
likely to give the best contributions.

This is of course a chicken and egg problem. If we would know what the 
importance of each path was, we would have solved the global illumination 
problem. So the best we can do is to make clever guesses.
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Direct IlluminationDirect Illumination
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One can do better by reformulating the rendering equation for direct 
illumination. Instead of integrating over a hemisphere, we will integrate over 
the surface area of the light source. This is valid, since we are only 
interested in the contribution due to the light source.

To transform the hemispherical coordinates to area coordinates over the 
hemisphere, we need to transform a differential solid angle to a differential 
surface. This introduces an extra cosine term and an inverse distance 
squared factor.

Additionally, the visibility factor, which was hidden in the hemispherical 
formulation since we ‘traced’ the ray to the closest intersection point, now 
needs to be mentioned explicitly.
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Generating direct pathsGenerating direct paths

• Parameters
– How many paths (“shadow-rays”)?

• total?
• per light source? (~intensity, importance, …)

– How to distribute paths within light source?
• distance from point x
• uniform

To compute the direct illumination using Monte Carlo integration, the 
following parameters can now be chosen:

- How many paths will be generated total for each radiance value to be 
computed? More paths result in a more accurate estimator, but the 
computational cost increases.
- How many of these paths will be send to each light source? It is intuitively 
obvious that one wants to send more paths to bright light sources, closer 
light sources, visible light sources.
- How to distribute the paths within each light source? When dealing with 
large light sources, points closer to the point to be shaded are more 
important than farther- away points.
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Generating direct pathsGenerating direct paths

1 path / source 9 paths / source 36 paths / source

Here are a few examples of the results when generating a different number 
of paths per light source.

This simple scene has only one light source, and respectively 1, 9 and 36 
paths are generated. The radiance values are computed more accurately in 
the latter case, and thus visible noise is less objectionable.

Although the first image is unbiased, its stochastic error is much higher 
compared to the last picture.
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Alternative direct pathsAlternative direct paths

– shoot paths at random over hemisphere; 
check if they hit light source

paths not used efficiently
noise in image

might work if light source occupies 
large portion on hemisphere

The algorithm in which the area of the light source is sampled is the most 
widely used way of computing direct illumination.

However, many more ways are possible, all based on a Monte Carlo
evaluation of the rendering equation.

This slide shows an algorithm we have shown before: directions are sampled 
over the hemisphere, and they are traced to see whether they hit the light 
source and contribute to the radiance value we are interested in.

In this approach, many samples are wasted since their contribution is 0.
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Alternative direct pathsAlternative direct paths

1 paths / point 16 paths / point 256 paths / point

These images show the result of hemispherical sampling. As can be 
expected, many pixels are black when using only 1 sample, since we will 
only have a non- black pixel if the generated direction points to the light 
source.
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Alternative direct pathsAlternative direct paths

– pick random point on random surface; check if 
on light source and visible to target point

paths not used efficiently

noise in image

might work for large surface light 
sources

This is another algorithm for direct illumination:

We can write the rendering equation for as an integral over ALL surfaces in 
the scene, not just the light sources. Of course, the direct illumination 
contribution of most of these surfaces will be 0.

A Monte Carlo procedure will then sample a random surface point. For each 
of these surface points, we need to evaluate the self- emitted radiance (only 
different from 0 when a light source), the visibility between the sampled point 
and the target point, the geometry factor, and the BRDF.

Since both the self- emitted radiance and the visibility term might produce a 0 
value in many cases, many of the samples will be wasted.
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Direct path generatorsDirect path generators

Hemisphere sampling

- Le can be 0

- no visibility in
estimator

Surface sampling

- Le can be 0

- 1 visibility term in
estimator

Light source sampling

- Le non-zero

- 1 visibility term in
estimator

Here we see the 3 different approaches next to each other.

The noise resulting from each of these algorithms has different causes.

When sampling the area of the light source, most of the noise will come from 
failed visibility tests, and a little noise from a varying geometry factor.

When sampling the hemisphere, most noise comes from the self- emitted 
radiance being 0 on the visible point, but the visibility itself does not cause 
noise. However, each sample is more costly to evaluate, since the visibility is 
now folded into the ray tracing procedure.

When sampling all surfaces in the scene, noise comes failed visibility checks 
AND self- emitted radiance being 0. So this is obviously the worst case for 
computing direct illumination.

Although all these algorithms produce unbiased images when using enough 
samples, the efficiency of the algorithms is obviously different.
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Direct pathsDirect paths

– Different path generators produce different 
estimators and different error characteristics

– Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);

A general MC algorithm for computing direct illumination then generates a 
number of paths, evaluates for each path the necessary energy transfer 
along the path (radiance * BRDF * geometry), and computes the weighted 
average.

The differences in different algorithms lie in how efficient the paths are w.r.t. 
energy transfer.
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Indirect IlluminationIndirect Illumination

– Paths of length > 1

– Many different path generators possible
– Efficiency dependent on:

• type of BRDFs along the path
• Visibility function
• ...

What about indirect illumination?

The principle remains exactly the same: we want to generate paths between 
a light source and a target point. The only difference is that the path will be 
of length greater than 1.

Again, the efficiency of the algorithm will depend on how clever the most 
useful paths can be generated.
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Indirect paths - surface 
sampling
Indirect paths - surface 
sampling

– Simple generator (path length = 2):
• select point on light source
• select random point on surfaces

per path:
2 visibility checks

An added complexity is that we now have to deal with recursive evaluations. 
Although we show in these slides only the final paths between the light 
source and the target point, in an actual algorithm these paths will be 
generated recursively.

A simple algorithm involves samples all surface points in the scene. To 
generate paths of length 2, one can generate a random point on the 
surfaces, and a random point on a light source (direct illumination for the 
intermediate point). The necessary energy transfer is computed along the 
paths, and a weighted average using the correct pdf’s is computed.
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Indirect paths - source 
shooting
Indirect paths - source 
shooting

– “shoot” ray from light source, find hit location
– connect hit point to receiver

per path:
1 ray intersection
1 visibility check

This algorithm might generate the intermediate point in a slightly different 
way: a random direction is sampled over the hemisphere around a random 
point on the light source, this ray is traced in the environment, and the 
closest intersection point found.

Then this visible point is connected to the target point.
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Indirect paths - receiver 
shooting
Indirect paths - receiver 
shooting

– “shoot” ray from receiver point, find hit 
location

– connect hit point to random point on light 
source per path:

1 ray intersection 
1 visibility check

Another algorithm might generate the intermediate point in a slightly different 
way: a random direction is sampled over the hemisphere around the target 
point, this ray is traced in the environment, and the closest intersection point 
found.

Then this visible point is connected to a random surface point generated on 
the light source.

This is the usual way of generating indirect paths in stochastic ray tracing.
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Indirect pathsIndirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver shooting

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0

Here are all the different approaches compared.

All three of these algorithms will produce an unbiased image when 
generating enough samples, but the efficiency will be very different.
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More variants ...More variants ...

• “shoot” ray from receiver point, find hit location
• “shoot” ray from hit point, check if on light source

per path:
2 ray intersections
Le might be zero

Even more variants can be thought of, as shown on this slide.

This is just to illustrate the general principle, that any path generator will do, 
as long as the correct energy transfer and correct probabilities for all the 
paths are computed.
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Indirect pathsIndirect paths

– Same principles apply to paths of length > 2
• generate multiple surface points
• generate multiple bounces from light sources and 

connect to receiver
• generate multiple bounces from receiver and 

connect to light sources
• …

– Estimator and noise characteristics change 
with path generator 

For paths of length greater than 2, one can also come up with a lot of 
different path generators.

Usually these are implemented recursively.
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Indirect pathsIndirect paths

– General algorithm:
compute_radiance (point, direction)

est_rad = 0;
for (i=0; i<n; i++)

p = generate_indirect_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Indirect paths
How to end recursion?
Indirect paths
How to end recursion?

– Contributions of further light bounces 
become less significant

– If we just ignore them, estimators will be 
incorrect!

An important issue when writing a recursive path generator is how to stop 
the recursion.

Our goal is still to produce unbiased images, that is, images which will be 
correct if enough samples are being generated.

As such, we cannot ignore deeper recursions, although we would like to 
spend less time on them, since the light transport along these longer paths is 
will probably be less significant.
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Russian Roulette is a technique that can be used to stop the recursion.

Mathematically, it means that we will cosnider part of integration domain to 
have a function value of 0. If a sample is generated in this part of the 
domain, it is ‘absorbed’. Of course, this means that the samples which are 
not absorbed will need to get a greater weight, since they have to 
compensate for the fact that we still want an unbiased estimator for the 
original integral.
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Russian RouletteRussian Roulette

– In practice: pick some ‘absorption probability’ α
• probability 1-α that ray will bounce
• estimated radiance becomes L/ (1-α)

– E.g. α = 0.9
• only 1 chance in 10 that ray is reflected
• estimated radiance of that ray is multiplied by 10

– Intuition
• instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times



41

Complex path generatorsComplex path generators

– Bidirectional ray tracing
• shoot a path from light source
• shoot a path from receiver
• connect end points

More complex path generators are also possible.

Bidirectional ray tracing is an algorithm that generates paths with variable 
length, both from the light source and the eye, and connects the end points.

Again, this is path generator, and results in an unbiased images if all relevant 
pdf’s are taken into account.
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Complex path generatorsComplex path generators

Combine all different paths and weight them correctly



43

Bidirectional ray tracingBidirectional ray tracing

– Parameters
• eye path length = 0: shooting from source
• light path length = 0: shooting from receiver

– When useful?
• Light sources difficult to reach
• Specific brdf evaluations (e.g., caustics)
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Bidirectional ray tracingBidirectional ray tracing

(E. Lafortune, 1996)
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Bidirectional ray tracingBidirectional ray tracing

(E. Lafortune, 1996)
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Classic ray tracing?Classic ray tracing?

– Classic ray tracing:
• shoot shadow-rays (direct illumination)
• shoot perfect specular rays only for indirect

– Ignores many paths
• does not solve the rendering equation

How does classic ray tracing compare to the physically correct path 
genertors described so far?

Classic ray tracing only generates a subset of all possible paths: shadow 
rays, and the perfect specular and refractive paths. As such, classic ray 
tracing ignores many of the other paths along which energy is transported 
from the light sources to the receiving surfaces.
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Even more advanced …Even more advanced …

• Store paths and re-use
– Photon-mapping (Jensen)
– Radiance cache (Walter)
– Irradiance gradients (Ward)

• Mutate existing paths
– Metropolis (Veach)
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General global illumination 
algorithm
General global illumination 
algorithm

– Design path generators

– Path generators determine efficiency of global 
illumination algorithm

– Future:
• Different path generators for different areas of the 

image
• Adaptively
• Re-use of paths as much as possible



The Rendering Equation and
Path Tracing

This chapter gives various formulations of the rendering equation, and outlines
several strategies for computing radiance values in a scene.

8.1 Formulations of the rendering equation

The global illumination problem is in essence a transport problem. Energy is emit-
ted by light sources and transported through the scene by means of reflections (and
refractions) at surfaces. One is interested in the energy equilibrium of the illumi-
nation in the environment.

The transport equation that describes global illumination transport is called
the rendering equation. It is the integral equation formulation of the definition
of the BRDF, and adds the self-emittance of surface points at light sources as an
initialization function. The self-emitted energy of light sources is necessary to
provide the environment with some starting energy. The radiance leaving some
point x, in directionΘ, can be expressed as an integral over all hemispherical
directions incident on the pointx (figure 8.1):

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)L(x← Ψ)cos(Nx,Ψ)dωΨ



Nx

x

L(x→Θ)

Le(x→Θ)
L(x←Ψ)

L(x←Ψ)

L(x←Ψ)

Figure 8.1: Rendering equation

One can transform the rendering equation from an integral over the hemisphere
to an integral over all surfaces in the scene. Also, radiance remains unchanged
along straight paths, so exitant radiance can be transformed to incident radiance and
vice-versa, thus obtaining new versions of the rendering equation. By combining
both options with a hemispheric or surface integration, four different formulations
of the rendering equation are obtained. All these formulations are mathematically
equivalent.

Exitant radiance, integration over the hemisphere

L(x→ Θ) = Le(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)L(y → −Ψ) cos(Nx,Ψ)dωΨ

with

y = r(x,Θ)

When designing an algorithm based on this formulation, integration over the
hemisphere is needed, and as part of the function evaluation for each point in the
integration domain, a ray has to be cast and the nearest intersection point located.

Exitant radiance, integration over surfaces

L(x→ Θ) = Le(x→ Θ) +
∫

A
fr(x,Ψ↔ Θ)L(y → −→yx)V (x, y)G(x, y)dAy

with

G(x, y) =
cos(Nx,Ψ)cos(Ny,Ψ)

r2xy



Algorithms based on this formulation need to evaluate the visibilityV (x, y)
between two pointsx andy, which is a different operation than casting a ray from
x in a directionΘ.

Incident radiance, integration over the hemisphere

L(x← Θ) = Le(x← Θ) +
∫

Ωy

fr(y,Ψ↔ −Θ)L(y ← Ψ) cos(Ny,Ψ)dωΨ

with

y = r(x,Θ)

Incident radiance, integration over surfaces

L(x← Θ) = Le(x← Θ) +
∫

A
fr(y,Ψ↔ −→yz)L(y ← −→yz)V (y, z)G(y, z)dAz

with

y = r(x,Θ)

8.2 Importance function

In order to compute the average radiance value over the area of a pixel, one needs
to know the radiant flux over that pixel (and associated solid angle incident w.r.t.
the aperture of the camera). Radiant flux is expressed by integrating the radiance
distribution over all possible surface points and directions. LetS = Ap×Ωp denote
all surface pointsAp and directionsΩp visible through the pixel. The fluxΦ(S) is
written as:

Φ(S) =
∫

Ap

∫
Ωp

L(x→ Θ) cos(Nx,Θ)dωΘdAx

When designing algorithms, it is often useful to express the flux as an inte-
gral over all possible points and directions in the scene. This can be achieved by
introducing the initial importance functionWe(x← Θ):

Φ(S) =
∫

A

∫
Ω
L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx

We(x← Θ) is appropriately defined by:



We(x← Θ) =

{
1 if (x,Θ) ∈ S
0 if (x,Θ) /∈ S

The average radiance value is then given by:

Laverage =

∫
A

∫
Ω L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx∫

A

∫
ΩWe(x← Θ) cos(Nx,Θ)dωΘdAx

We now want to develop the notion of importance further, by considering the
possible influence of some energy value at each pair(x,Θ) on the valueΦ(S). Or:
if a single radiance valueL(x → Θ) is placed at(x,Θ), and if there are no other
sources of illumination present, how large would the resulting value ofΦ(S) be?
This influence value attributed toL(x → Θ) is called the importance of(x,Θ)
w.r.t. S, is written asW (x← Θ), and depends only on the geometry and reflective
properties of the objects in the scene.

The equation expressingW (x← Θ) can be derived by taking into account two
mechanisms in whichL(x→ Θ) can contribute toΦ(S):

Self-contribution If (x,Θ) ∈ S, thenL(x → Θ) fully contributes toΦ(S). This
is called the self-importance of the setS, and corresponds to the above defi-
nition ofWe(x← Θ).

Indirect contributions It is possible that some part ofL(x → Θ) contributes
to Φ(S) through one or more reflections at several surfaces. The radiance
L(x→ Θ) travels along a straight path and reaches a surface pointr(x,Θ).
Energy is reflected at this surface point according to the BRDF. Thus, there
is a hemisphere of directions atr(x,Θ), each emitting a differential radiance
value as a result of the reflection of the radianceL(r(x,Θ) ← −Θ). By
integrating the importance values for all these new directions, we have a new
term forW (x← Θ).

Both terms combined produces the following equation:

W (x← Θ) = We(x← Θ)+
∫

Ωz

fr(z,Ψ↔ −Θ)W (z ← Ψ) cos(Nr(x,Θ),Ψ)dωΨ

with

z = r(x,Θ)



Mathematically, this equation is identical to the transport equation of incident
radiance, and thus, the notionincidencecan be attributed to importance. The source
functionWe = 1 if x is visible through the pixel andΘ is a direction pointing
through the pixel to the aperture of the virtual camera.

To enhance the analogy with radiance as a transport quantity, exitant impor-
tance can be defined as:

W (x→ Θ) = W ((r,Θ)← −Θ)

and also:

W (x→ Θ) = We(x→ Θ) +
∫

Ωx

fr(x,Ψ↔ Θ)W (x← Ψ)cos(Nx,Ψ)dωΨ

An expression for the flux of through every pixel, based on the importance
function, can now be written. Only the importance of the light sources needs to be
considered when computing the flux:

Φ(S) =
∫

A

∫
Ωx

Le(x→ Θ)W (x← Θ)cos(Nx,Θ)dωΘdAx

It is also possible to writeΦ(S) in the following form:

Φ(S) =
∫

A

∫
Ωx

Le(x← Θ)W (x→ Θ)cos(Nx,Θ)dωΘdAx

and also:

Φ(S) =
∫

A

∫
Ωx

L(x→ Θ)We(x← Θ) cos(Nx,Θ)dωΘdAx

Φ(S) =
∫

A

∫
Ωx

L(x← Θ)We(x→ Θ) cos(Nx,Θ)dωΘdAx

There are two approaches to solve the global illumination problem: The first
approach starts from the pixel, and the radiance values are computed by solving
one of the transport equations describing radiance. A second approach computes
the flux starting from the light sources, and computes for each light source the
corresponding importance value. If one looks at various algorithms in some more
detail:



• Stochastic ray tracing propagates importance, the surface area visible through
each pixel being the source of importance. In a typical implementation, the
importance is never explicitly computes, but is implicitly done by tracing
rays through the scene and picking up illumination values from the light
sources.

• Light tracing is the dual algorithm of ray tracing. It propagates radiance
from the light sources, and computes the flux values at the surfaces visible
through each pixel.

• Bidirectional ray tracing propagates both transport quantities at the same
time, and in an advanced form, computes a weighted average of all possible
inner products at all possible interactions.

8.3 Path formulation

The above description of global illumination transport algorithms is based on the
notion of radiance and importance. One can also express global transport by con-
sidering path-space, and computing a transport measure over each individual path.
Path-space encompasses all possible paths of any length. Integrating a transport
measure in path-space then involves generating the correct paths (e.g. random
paths can be generated using an appropriate Monte Carlo sampling procedure),
and evaluating the throughput of energy over each generated path. This view was
developed by Spanier and Gelbard and introduced into rendering by Veach.

Φ(S) =
∫

Ω∗
f(x)dµ(x)

in whichΩ∗ is the path-space,x is a path of any length anddµ(x) is a measure
in path space .f(x) describes the throughput of energy and is a succession of
G(x, y), V (x, y) and BRDF evaluations, together with aLe andWe evaluation at
the beginning and end of the path.

An advantage of the path formulation is that paths are now considered to be
the sample points for any integration procedure. Algorithms such as Metropolis
light transport or bidirectional ray tracing are often better described using the path
formulation.



8.4 Simple stochastic ray tracing

In any pixel-driven rendering algorithm we need to use the rendering equation to
evaluate the appropriate radiance values. The most simple algorithm to compute
this radiance value is to apply a basic and straightforward MC integration scheme
to the standard form of the rendering equation:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ)

= Le(x→ Θ) +
∫

Ωx

L(x← Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

The integral is evaluated using MC integration, by generatingN random direc-
tionsΨi over the hemisphereΩx, according to some pdfp(Ψ). The estimator for
Lr(x→ Θ) is given by:

〈Lr(x→ Θ)〉 =
1
N

N∑
i=1

L(x← Ψi)fr(x,Θ↔ Ψi) cos(Ψi, Nx)
p(Ψi)

L(x← Ψi), the incident radiance atx, is unknown. It is now necessary to trace
the ray leavingx in directionΨi through the scene to find the closest intersection
pointr(x,Ψ). Here, another radiance evaluation is needed. The result is a recursive
procedure to evaluateL(x← Ψi), and as a consequence, a path, or a tree of paths
if N > 1, is generated in the scene.

These radiance evaluations will only yield a non-zero value, if the path hits
a surface for whichLe has a value different from0. In other words, in order to
compute a contribution to the illumination of a pixel, the recursive path needs to
reach at least one of the light sources in the scene. If the light sources are small,
the resulting image will therefore mostly be black. This is expected, because the
algorithm generates paths, starting at a point visible through a pixel, and slowly
working towards the light sources in a very uncoordinated manner.

8.5 Russian Roulette

The recursive path generator described above needs a stopping condition to prevent
the paths being of infinite length. We want to cut off the generation of paths, but at
the same time, we have to be very careful about not introducing any bias into the



image generations process. Russian Roulette addresses the problem of keeping the
lengths of the paths manageable, but at the same time leaves room for exploring all
possible paths of any length. Thus, an unbiased image can still be produced.

The idea of Russian Roulette can best be explained by a simple example: sup-
pose one wants to compute a valueV . The computation ofV might be com-
putationally very expensive, so we introduce a random variabler, which is uni-
formly distributed over the interval[0, 1]. If r is larger than some threshold value
α ∈ [0, 1], we proceed with computingV . However, ifr ≤ α, we do not compute
V , and assumeV = 0. Thus, we have a random experiment, with an expected
value of(1 − α)V . By dividing this expected value by(1 − α), an unbiased esti-
mator forV is maintained.

If V requires recursive evaluations, one can use this mechanism to stop the
recursion.α is called the absorption probability. Ifα is small, the recursion will
continue many times, and the final computed value will be more accurate. Ifα is
large, the recursion will stop sooner, and the estimator will have a higher variance.
In the context of our path tracing algorithm, this means that either accurate paths
of a long length are generated, or very short paths which provide a less accurate
estimate.

In principle any value forα can be picked, thus controlling the recursive depth
and execution time of the algorithm.1 − α is often set to be equal to the hemi-
spherical reflectance of the material of the surface. Thus, dark surfaces will absorb
the path more easily, while lighter surfaces have a higher chance of reflecting the
path.

8.6 Indirect Illumination

In most path tracing algorithms, direct illumination is explicitly computed sepa-
rately from all other forms of illumination (see previous chapter on direct illumina-
tion). This section outlines some strategies for computing the indirect illumination
in a scene. Computing the indirect illumination is usually a harder problem, since
one does not know where most important contributions are located. Indirect illu-
mination consists of the light reaching a target pointx after at least one reflection
at an intermediate surface between the light sources andx.



8.6.1 Hemisphere sampling

The rendering equation can be split in a direct and indirect illumination term. The
indirect illumination (i.e. not including any direct contributions from light sources
to the pointx) contribution toL(x→ Θ) is written as:

Lindirect(x→ Θ) =
∫

Ωx

Lr(r(x,Ψ)→ −Ψ)fr(x,Θ↔ Ψ) cos(Ψ, Nx)dωΨ

The integrand contains the reflected termsLr from other points in the scene,
which are themselves composed of a direct and indirect illumination part. In a
closed environment,Lr(r(x,Ψ)→ −Ψ) usually has a non-zero value for all(x,Ψ)
pairs. As a consequence, the entire hemisphere aroundx needs to be considered as
the integration domain.

The most general MC procedure to evaluate indirect illumination, is to use any
hemispherical pdfp(Ψ), and generatingN random directionsΨi. This produces
the following estimator:

〈Lindirect(x→ Θ)〉 =
1
N

N∑
i=1

Lr(r(x,Ψi)→ −Ψi)fr(x,Θ↔ Ψi) cos(Ψi, Nx)
p(Ψi)

In order to evaluate this estimator, for each generated directionΨi, the BRDF
and the cosine term are to be evaluated, a ray fromx in the direction ofΨi needs
to be traced, and the reflected radianceLr(r(x,Ψi) → −Ψi) at the closest inter-
section pointr(x,Ψi) has to be evaluated. This last evaluation shows the recursive
nature of indirect illumination, since this reflected radiance atr(x,Ψi) can be split
again in a direct and indirect contribution.

The simplest choice forp(Ψ) is p(Ψ) = 1/2π, such that directions are sampled
proportional to solid angle. Noise in the resulting picture will be caused by varia-
tions in the BRDF and cosine evaluations, and variations in the reflected radiance
Lr at the distant points.

The recursive evaluation can again be stopped using Russian Roulette, in the
same way as was done for simple stochastic ray tracing. Generally, the local hemi-
spherical reflectance is used as an appropriate absorption probability. This choice
can be explained intuitively: One only wants to spend work (i.e. tracing rays and
evaluatingLindirect(x)) proportional to the amount of energy present in different
parts of the scene.



8.6.2 Importance sampling

Uniform sampling over the hemisphere does not use any knowledge about the in-
tegrand in the indirect illumination integral. However, this is necessary to reduce
noise in the final image, and thus, some form of importance sampling is needed.
Hemispherical pdf’s proportional (or approximately proportional) to any of the fol-
lowing factors can be constructed:

Cosine sampling
Sampling directions proportional to the cosine lobe around the normalNx pre-

vents directions to be sampled near the horizon of the hemisphere wherecos(Ψ, Nx)
yields a very low value, and thus possibly insignificant contributions to the com-
puted radiance value.

BRDF sampling
BRDF sampling is a good noise-reducing technique when a glossy or highly

specular BRDFs is present. It diminishes the probability that directions are sam-
pled where the BRDF has a low value or zero value. Only for a few selected BRDF
models, however, is it possible to sample exactly proportional to the BRDF. Even
better would be trying to sample proportional to the product of the BRDF and the
cosine term. Analytically, this is even more difficult to do, except in a few rare
cases where the BRDF model has been chosen carefully.

Incident radiance field sampling
A last technique that can be used to reduce variance when computing the in-

direct illumination is to sample a directionΨ according to the incident radiance
valuesLr(x← Ψ). Since this incident radiance is generally unknown, an adaptive
technique needs to be used, where an approximation ofLr(x← Ψ) is constructed
during the execution of the rendering algorithm.

8.6.3 Overview

It is now possible to build a full global illumination renderer using stochastic path
tracing. The efficiency, accuracy and overall performance of the complete algo-
rithm will be determined by the choice of all of the following parameters. As is
usual in MC evaluations, the more samples or rays are generated, the less noisy the
final image will be.

Number of viewing rays per pixel The amount of viewing rays through each pixel
is responsible for effects such as aliasing at visible boundaries of objects or
shadows.



Direct Illumination: • The total number of shadow rays generated at each sur-
face pointx;

• The selection of a single light source for each shadow ray;

• The distribution of the shadow ray over the area of the selected light
source.

Indirect Illumination (hemisphere sampling):

• Number of indirect illumination rays;

• Exact distribution of these rays over the hemisphere (uniform, cosine,
...);

• Absorption probabilities for Russian Roulette.

The better one makes use of importance sampling, the better the final image
and the less noise there will be. An interesting question is, given a maximum
amount of rays one can use per pixel, how should these rays best be distributed to
reach the highest possible accuracy for the full global illumination solution? This
is still an open problem. There are generally accepted ’default’ choices, but there
are no hard and fast choices. It generally is accepted that branching out equally at
all levels of the tree is less efficient. For indirect illumination, a branching factor
of 1 is often used after the first level. Many implementations even limit the indirect
rays to one per surface point, and compensate by generating more viewing rays.




