
Computer Graphics 2

TEXTURING

SEMINAR 9

Parametric surface (1)
2

Parametric surface (2)
3

𝑆 = 𝒇(Ω)

Parametric surface (3)
4

𝑆 = 𝒇(Ω)

Bump mapping (1)
5

 Simulates bumps and wrinkles

 Achieved by perturbing surface normal

 Objects appear more complex

Bump mapping (2)
6

 Simulates bumps and wrinkles

 Achieved by perturbing surface normal

 Objects appear more complex

Bump mapping (3)
7

 Simulates bumps and wrinkles

 Achieved by perturbing surface normal

 Objects appear more complex

Bump mapping (4)
8

 Simulates bumps and wrinkles

 Achieved by perturbing surface normal

 Objects appear more complex

Bump mapping example
9

Normal mapping
10

 Normal is directly stored in texture

 Each component between [0,1] should change to

[−1,1]

 To avoid problems with different models normal is

stored in tangent space (TBN)

 In practice light computation is converted to TBN

 At exercise normal is converted to global coordinates 

TBN calculation
11

normal at point: 𝒏 = 𝑘𝑛𝑜𝑤𝑛

TBN calculation
12

normal at point: 𝒏 = 𝑘𝑛𝑜𝑤𝑛

tangent at point: 𝐭 =?

bitangent at point: 𝐛 =?

TBN calculation
13

𝒏 = 𝑘𝑛𝑜𝑤𝑛

𝐭 =
𝒏×𝒖𝒑

𝒏×𝒖𝒑

𝒃 =
𝒕×𝒏

𝒕×𝒏

𝒖𝒑 = (0,0,1)

TBN calculation
14

𝒏 = 𝑘𝑛𝑜𝑤𝑛

𝐭 =
𝒏×𝒖𝒑

𝒏×𝒖𝒑

𝒃 =
𝒕×𝒏

𝒕×𝒏

𝒖𝒑 = (0,0,1)

𝑻𝑩𝑵 = [𝒕, 𝒃, 𝒏]

𝒏′ = 𝑻𝑩𝑵 ∗ 𝑁𝑜𝑟𝑚𝑎𝑙𝑀𝑎𝑝(𝑢, 𝑣)

Normal mapping example
15

Parallax mapping
16

 Displaces texture coordinates at a point by a function

of view angle (in tangent space) and a height map

 At steeper values texture is displaced more giving the

illusion of depth

Parallax mapping example
17

Displacement mapping
18

 Changes actual geometric position of vertices

 𝑣′ = 𝑣 + 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑀𝑎𝑝 𝑢, 𝑣 ∗ 𝒏

 Usually coupled with a subdivision step

 Surface is tessellated on the GPU

 New vertex positions are calculated with displacement

 From all presented techniques only displacement

mapping changes positions of vertices

 Therefore only displacement mapping alters object

boundary

Displacement mapping example
19

Normal vs. Parallax vs. Displacement
20

Shadow mapping 21

Shadow mapping (1)
22

Shadow mapping (2)
23

Shadow mapping (3)
24

𝑙𝑖𝑔ℎ𝑡 = 𝐿𝑖𝑔ℎ𝑡𝑀𝑉𝑃 ∗ 𝑣𝑒𝑟𝑡𝑒𝑥 OpenGL [-1,1] <> texture [0,1]

Shadow mapping (4)
25

𝑠ℎ𝑎𝑑𝑜𝑤𝑚𝑎𝑝 𝑙𝑖𝑔ℎ𝑡𝑥 , 𝑙𝑖𝑔ℎ𝑡𝑦 < 𝑙𝑖𝑔ℎ𝑡𝑧/𝑙𝑖𝑔ℎ𝑡𝑤

𝑙𝑖𝑔ℎ𝑡 = 𝐿𝑖𝑔ℎ𝑡𝑀𝑉𝑃 ∗ 𝑣𝑒𝑟𝑡𝑒𝑥 OpenGL [-1,1] <> texture [0,1]

Perspective aliasing
26

 Pixels in view space are not in 1:1 ratio with texels in the
shadow map

 Pixels in near plane are closer and require higher resolution

 With too high resolution shadows of small object disappear

Projective aliasing
27

 Texels in camera space to texels in eye space are not in
1:1 ratio

 Occurs when surface normal is orthogonal to the light

 Caused by orientation of geometry with respect to the
light

Shadow acne
28

 Shadow map quantizes depth over an entire texel

 When shader compares values self-shadowing

occurs

 Can be also caused by precision errors

Peter panning
29

 Peter Pan got detached from his shadow and could

fly

 Makes objects appear to float above the surface

Questions? 30

