

Parametric surface (1)

Parametric surface (2)

Parametric surface (3)

Surface parameterization

Bump mapping (1)

- Simulates bumps and wrinkles
- Achieved by perturbing surface normal
 - Objects appear more complex

$$\mathbf{n} = \frac{\mathbf{P_u} \times \mathbf{P_v}}{|\mathbf{P_u} \times \mathbf{P_v}|}$$

$$\mathbf{P_u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$$

Bump mapping (2)

- Simulates bumps and wrinkles
- Achieved by perturbing surface normal
 - Objects appear more complex

$$\mathbf{n} = \frac{\mathbf{P_u} \times \mathbf{P_v}}{|\mathbf{P_u} \times \mathbf{P_v}|}$$

$$d(u, v) : \mathbf{P'} = \mathbf{P} + d(u, v)\mathbf{n}$$

$$\mathbf{P_u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$$

Bump mapping (3)

- Simulates bumps and wrinkles
- Achieved by perturbing surface normal
 - Objects appear more complex

$$\mathbf{n} = \frac{\mathbf{P_u} \times \mathbf{P_v}}{|\mathbf{P_u} \times \mathbf{P_v}|}$$
$$d(u, v) : \mathbf{P'} = \mathbf{P} + d(u, v)\mathbf{n}$$
$$\mathbf{p'_u} = \mathbf{p_u} + \frac{\partial d}{\partial u}\mathbf{n} + d(u, v)\mathbf{n_u}$$
$$\mathbf{p'_v} = \mathbf{p_v} + \frac{\partial d}{\partial v}\mathbf{n} + d(u, v)\mathbf{n_v}$$

$$\mathbf{P_u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$$

$$\mathbf{n} \times \mathbf{n} = 0$$

Bump mapping (4)

- Simulates bumps and wrinkles
- Achieved by perturbing surface normal
 - Objects appear more complex

$$\mathbf{n} = \frac{\mathbf{P_u} \times \mathbf{P_v}}{|\mathbf{P_u} \times \mathbf{P_v}|}$$

$$d(u, v) : \mathbf{P'} = \mathbf{P} + d(u, v)\mathbf{n}$$

$$\mathbf{p'_u} = \mathbf{p_u} + \frac{\partial d}{\partial u}\mathbf{n} + d(u, v)\mathbf{n_u}$$

$$\mathbf{p'_v} = \mathbf{p_v} + \frac{\partial d}{\partial v}\mathbf{n} + d(u, v)\mathbf{n_v}$$

$$\mathbf{n'} = \mathbf{n} + \frac{\partial d}{\partial u}\mathbf{n} \times \mathbf{p_v} + \frac{\partial d}{\partial v}\mathbf{n} + d(u, v)\mathbf{n_v} \times \mathbf{p_u}$$

$$\mathbf{P_u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$$

$$\mathbf{n} \times \mathbf{n} = 0$$

Bump mapping example

Normal mapping

- Normal is directly stored in texture
 - Each component between [0,1] should change to [-1,1]
 - To avoid problems with different models normal is stored in tangent space (TBN)
 - In practice light computation is converted to TBN
 - At exercise normal is converted to global coordinates ©

normal at point: n = known

normal at point: n = known

tangent at point: t = ?

bitangent at point: b = ?

$$n = known$$
 $up = (0,0,1)$

$$t = \frac{n \times up}{|n \times up|}$$

$$b = \frac{t \times n}{|t \times n|}$$

$$n = known$$
 $up = (0,0,1)$

$$t = \frac{n \times up}{|n \times up|}$$

$$b = \frac{t \times n}{|t \times n|}$$

$$TBN = [t, b, n]$$

$$n' = TBN * NormalMap(u, v)$$

Normal mapping example

Parallax mapping

- Displaces texture coordinates at a point by a function of view angle (in tangent space) and a height map
- At steeper values texture is displaced more giving the illusion of depth

Parallax mapping example

Displacement mapping

- Changes actual geometric position of vertices
 - $\mathbf{v}' = v + DisplacementMap(u, v) * \mathbf{n}$
- Usually coupled with a subdivision step
 - Surface is tessellated on the GPU
 - New vertex positions are calculated with displacement
- From all presented techniques only displacement mapping changes positions of vertices
 - Therefore only displacement mapping alters object boundary

Displacement mapping example

Normal vs. Parallax vs. Displacement

Shadow mapping

Shadow mapping (1)

Shadow mapping (2)

Shadow mapping (3)

light = LightMVP * vertex OpenGL [-1,1] <> texture [0,1]

Shadow mapping (4)

 $light = LightMVP * vertex \quad \text{OpenGL [-1,1]} <> \text{ texture [0,1]}$ $shadowmap \big(light_x, light_y \big) < light_z / light_w$

Perspective aliasing

- Pixels in view space are not in 1:1 ratio with texels in the shadow map
- Pixels in near plane are closer and require higher resolution
- With too high resolution shadows of small object disappear

Projective aliasing

- Texels in camera space to texels in eye space are not in
 1:1 ratio
- Occurs when surface normal is orthogonal to the light
- Caused by orientation of geometry with respect to the light

Shadow acne

- Shadow map quantizes depth over an entire texel
- When shader compares values self-shadowing occurs
- Can be also caused by precision errors

Peter panning

- Peter Pan got detached from his shadow and could fly
- Makes objects appear to float above the surface

Questions?