

Parametric surface (1)
N

Parametric surface (2)

I I —————————
§=f()

T

Parametric surface (3)

I I ——
§=f()

T

(2
UI.V) (xi.vl.zi)

N/

(u,,v | (xkvyka)

Surface parameterization
S

?

/\K

(2
UI.V) (xi.vl.zi)

N/

(u,,v | (xkvyka)

Bump mapping (1)

Simulates bumps and wrinkles

Achieved by perturbing surface normal

Obijects appear more complex

Pu X PV Pu _ (c“):r. dy E)z)

n= e Zd M=
P, x P

ou’ Ou’ Ou

Bump mapping (2)

Simulates bumps and wrinkles

Achieved by perturbing surface normal

Obijects appear more complex

Pu X PV Pu _ (3:1‘. dy E)z)

n= e Zd M=
P, x P

ou’ Ou’ Ou

d(u,v) : P' =P+ d(u,v)n

Bump mapping (3)

Simulates bumps and wrinkles

Achieved by perturbing surface normal

Obijects appear more complex

n— P. x Py Pu _ (%
P, x P “
d(u,v) : P' =P+ d(u,v)n
od
p’u = Pu + %n + d(u, v)ny
od
P, = Pv + 5,0 d(u,v)ny nxn=0
’E}T

r Oy 9z
7 ou? Ou

)

Bump mapping (4)

Simulates bumps and wrinkles

Achieved by perturbing surface normal

Obijects appear more complex

P, x P,

YT P, <Py

d(u,v): P' =P +d(u,v)

!/
p,=p au /

od

pir:pv+

od Od
n=n-+—nxpy+ -
ou v

n+ d(u.v)ny X pPu

nxn=>~0

r Oy 9z
7 ou? Ou

)

Bump mapping example

Complcx brick patterns

Normal mapping

Normal is directly stored in texture

Each component between |0,1] should change to
[-1,1]
To avoid problems with different models normal is
stored in tangent space (TBN)

In practice light computation is converted to TBN

At exercise normal is converted to global coordinates ©

TBN calculation
T

normal at point: n = known

TBN calculation

normal at point: n = known
tangent at point: t =7

bitangent at point: b =?

TBN calculation

n = known up = (01011)

__ nXup

_ Inxup|

txXn

" |txn|

TBN calculation
s

n = known up = (0;011)

__ nXup

B Inxup|

txXn

" |txn|

TBN = [t, b, n]

n' = TBN « NormalMap(u, v)

Normal mapping example

Parallax mapping

o1 Displaces texture coordinates at a point by a function
of view angle (in tangent space) and a height map

71 At steeper values texture is displaced more giving the
illusion of depth

_ offset
height map

eye vector

polygon

\

Parallax mapping example

Displacement mapping

Changes actual geometric position of vertices

v' = v + DisplacementMap(u,v) *n
Usually coupled with a subdivision step

Surface is tessellated on the GPU

New vertex positions are calculated with displacement
From all presented techniques only displacement
mapping changes positions of vertices

Therefore only displacement mapping alters object
boundary

Displacement mapping example

Normal vs.

Basic. Rendering

h A

Parallax Occlusion=Rehdei

Parallax vs. Displacement

NormalMap Renderifgy

Rt &amy

W

¥ sk

e

placementVfap R@deﬁilg
" [y

2%

- Shadow mapping

Shadow mapping (1)

Shadow mapping (2)

Shadow mapping (3)

light = LightMVP * vertex OpenGLI[-1,1] <> texture [0,1]

Shadow mapping (4)

light = LightMVP * vertex OpenGLI[-1,1] <> texture [0,1]

b shadowmap(light,, light,)) < light,/light,,

Perspective aliasing

71 Pixels in view space are not in 1:1 ratio with texels in the
shadow map

71 Pixels in near plane are closer and require higher resolution

1 With too high resolution shadows of small object disappear

Projective aliasing
i

Texels in camera space to texels in eye space are not in
1:1 ratio

Occurs when surface normal is orthogonal to the light

Caused by orientation of geometry with respect to the
light

Shadow acne
29
1 Shadow map quantizes depth over an entire texel

1 When shader compares values self-shadowing
occurs

11 Can be also caused by precision errors

Peter panning
o0

1 Peter Pan got detached from his shadow and could
fly
1 Makes objects appear to float above the surface

" o

