


Outline of Lesson 04

* | inear Transformations
* Affine Transformations

* Perspective Projections

* Parallel Projections



Linear Transformations

* Function L: R" = R™ is linear iff
> L(u+tv) =L(u) +L(v) (addition)
> L(cu) =cL (u) (scalar multiplication)

* Linear function preserves linear combinations
> L{cOissiiae i [H(u) + ... +c L(u)

* Linear function L is a linear transformation iff

> Inverse function L™ exists (is invertible)



Linear Transformations

* LineCIERRSIaRation L:(x., ..., x J—=(x, ..., x )

-)X]=C]]X]+...+C]nxn (x,) (C L )(x)
1 11 In 1
-> ¥ it ot
> X =@ X HUHC e e\
* [N matrix form
> L(x):x = Mx

> x =[x, ROl amand=hd ) L X )

> Mis (n x n) transformation matrixM = (c )



Linear Transformations

* SUppose linear transformations L. and L,
> L, (x) = Mx
> L (x) = Mx

» Composite transformation L (x) =L, (L, (x))
> L(x) =L,(L,(x)) =L, (Mx) = M,(Mx) = (MM)x = Mx
> Is linear again: L(x) = Mx where M = MM

> Is closed under composition M =M ..M



Scale

* Scale in 3D by s , S, S,

> X =8 X
. . N AN
>2 =87 : y 4 DD
* [In Matrix form L B
X
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Shear

» Shear in 3D by shxy, sh. shyx, shyz, sh_ shZy
> X =X+ sy = sh z

' = +y +
>y =ie shyzz

/_\L
-)Z'=SZZ+ShYZZ+Z /\ /\
* [N Matrix form : L YLM/
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Rotation about Coordinate Axis

* Rotation about Z-axis

y A
y' = (-sin a, cos )

X' = (cos q, sin Q)




X-Axis Rotation

» Rotation about X-axis in 3D by angle a_

> X =X

>y =cos(a)y -sin(a )z

T
> Z' =sin(a )y *+ cos(a )z /\

N < =

+sino.  +cosa/l\z

Y
Rotate (30°)
| 0 0 X i
0 +cosa —sinal|y
0




Y-Axis Rotation

* Rotation about Y-axis in 3D by angle o,
> x =cos(a )x +sin(a )z
> Yish B
> Z' =-sin(q )x + cos(q )z /\
* [In Matrix form 3 | 1\/

+

X

, Rotate  (30°)

+cosa 0 +sino |l x
0 | 0 y

—sina 0 +cosall\z




Z-Axis Rotation

» Rotation about X-axis in 3D by angle a_
> X =cos(a )x -sin(a )y

>y =sin(a )x + cos(a )y

* [n Matrix form ! L *\/

/

X
yr

Z!

+sina  +cosa O|| y

: Rotate  (30°)
+cosa —smmoa O} x
0 0 1)(2)




XYZ Rotation

* XYZ Rotation (a,, o, ,) is composite rotation
around X-axis then by Y-axis and finally Z-axis

> R(v) =R,R (R (v))) =RRR Vv =Rv

> R=RRR (matrix multiplication)



Linear Transformation Summary

* Origin maps to origin
* Lines map to lines

* Parallel lines remain parallel

* Rotations are preserved

* Closed under composition...

* However simple translation can not be defined
with linear transformation — we need affine
transformations



What is Translation

* What is actually translation ?

* Translation of point P by a vector v is new
ooint P’ (=P + v)

* Translation of vector u by a vector vis the
same vector V' (=v)

L y vz



Affine Transformations

» AFfINSSIRSNSISRIGtion A: (X, ..., X )= (X, ..., X )

b + + +
> X GO C X t]

ke i Cont X A
> = )
> X =C X+l Fe x|+t X, Cat " Cunf\Xn] \1y

Nnl" 1 N

NN N

* In a “translation” form

> A(X): x' = Mx +t (= linear transform. + translation)
> X' =l R e ) | t= (T, ..., t)

> Mis (n x n) transformation matrixM = (c )



Affine Transformations

* Can we find pure matrix form ?

* Yes, we need homogenous coordinates

> Use one more dimension (R™)

> Points: p = (p,, ..., o) become (p,, ..., 0, 1)

> Vectors: v = (v, ..., v ) become (v, ..., Vv, 0)

1

* Matrix form
(p'l\ (Cll + o Mg tIle\ (v’l\ (011 5 i ol

p n Cn] i Cnn tl’l pn V n C.I’l] gl Cnn
] 0 %G 1/1/ \o \o )




Translation in Matrix form

* Translation of point (or vector) x =x +t

> X = (X, ... x . x ), t=(t, ..., t,0)

> X, =i X =x +t

* Can be expressed in matrix form as

> XIS
> T —is translation | x:'l | (1 ? t}“ ’fl |
matrix (R™ x R™) oo et A |
X ’nﬂ) \O - 0 1/ \x,m/
i = T X



Affine Transformations

* Using homogenous coordinates we can

> Express linear transformation M and translation T

* Therefore A(x) =Mx +t =T (Mx) = TMx
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Affine Transformation Summary

* Origin does not map to origin
* Lines map to lines

* Parallel lines remain parallel

* Rotations are preserved
* Closed under composition...

* Translation can be expressed



Projections

* General definition
> Transform points in Nn-space to m-space (m<n)
* [n computer graphics

> Map 3D camera coordinates to 2D screen
coordinates

Center of

Projection
—




Taxonomy Projections

Planar geometric
projections

——

/Porollel\ Perspective
Orthograophic Oblique One-point
Top Cabinet Two-point
(ellelg)
Axonometric  Cqvalier Three-point
Front
elevation
[sometric - Other
Side ther

elevation



Projection Types
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Perspective Projection

> Maop points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Center of

Projection
f/’

\




Perspective Projection

* In perspective projection, a 3D point in

* o truncated pyramid - view frustum (in eye
coordinates) is mapped to

* o cube (Normalized device coordinates)

> The x-coordinate from

> The y-coordinate from

> The z-coordinate from

1, r] to [, 1]
b, t] to [, 1]

n, f] to [, 1].



Perspective View Frustum

* Definition of perspective view frustum
> | (left), r (right), b (bottom), t (top), n (near), f (far)

Normalized Device Canonical View
Coordinates (NDC) Y  Volume

Eye coordinates (1.-1,-1)




Perspective Projection

.z )

» Eye to near plane projection (><e,ye,Ze)""(><p aZ

> Similar triangles ratio x /x_ = -n/z, = x_ =-(n/z )x,

> Similar triangles ratio:y /y_=-n/z_ — y_=-(n/z )y,

> We project on near plane — z_=-n




Perspective Projection

* Since projected point (xp,yp,zp) has division in
its definition there is no matrix formulation

* We split Perspective Projection into

> 1) Homogenous perspective projection P
> 2) Clip projection C



Perspective Projection Steps

* Homogenous perspective projection
> From eye coordinates (x_,y_,z_, w_)
> To clip coordinates (x_,y_,z_,w)

> 4x4 homogenous transformation matrix P

x| 7 o]
Ve | Wl
z T 20 2 AT
wc/ \? A ?/ W,



Perspective Projection Steps

* Clip projection
> From homogenous clip coordinates (x_,y_, z_, w )

> To normalized device coordinates (x ,y , z )

> Reduction from homogenous coordinates to
normal 3d coordinates

(xn\ (xclwc\
Yo |Z| Vel we

\zn/ \ZC/WC)



Perspective Projection

* Since X, and Y, are inverse proportional to -z_

* We setw_=-z_to postpone division by -z_into
Clip projection

* Therefore last row of homogenous projection
matrix P is (0,0,-1,0)

2rie 2R
o R g
z. || 7z e
wc/ 0 0 -1 o/ w,|



Perspective Projection

*» Map X, ond 7 tox andy_of NDC with linear
interpolation [l, r] — [-1,1] and [b, t] — [-1,1]

_1=ich

r -1

Tp+

Tn
2r : :
1= r—1 + f3 (substitute (r.1) for (z,.x,))
2r r—1 2r
ﬁ=1-r—£=r—£-r—£

r—I0{—2r —r—-0l 71+

Mapping from Xp to X, r—| r—1 r—1
2z, 1
r—1 r—1
2y, t+Db

Yn = =

t—b t-b

* L) L
..-Ln




Perspective Projection

2y, t+b
“t—b t—-b
T Ye
al _i t+b
t—b t—b
2n - 1, t+b
T (t=b)-z) t—b
2n




Perspective Projection

* Z and z_do not depend on x_and y_thus

BN
ST (|| |z Az+Bw,
7 i 00 . T Wz
Wc/ 0 0 i We/

0 0 e ie0

* Solve A and B for boundary values of z_and z_

-)Whenze=-n—>zn=-1 -An +B = -n

> When'z = -iimid i Af+B ="

> Solve A and B from the these 2 linear equations



Perspective Projection

* After solving A and B we get

-)A:

-(f +n) / (f - n)

B =-2fn/ (f - n)

* And we get final Projection Matrix

2n r+/
— 0 — 0
r—I —I
2n b
0  — 0
t—b t— b
0 0 —(f+n ) —21fn
Ui ] m
0 0 1 0

X

Ve

Ze

i




Parallel Projection

* Center of projection is at infinity ¢

> Direction of projection (DOP) same for all points




Parallel Projection Types

|sometric




Orthographic Projection

* Definition of orthographic view frustum
> | (left), r (right), b (bottom), t (top), n (near), f (far)

Orthographic View Frustum

{l, &, n)

. . Canonical View
(r, b, n) Normalized Device Volume
Coordinates (NDC)

(1.-1,-1)

Eye coordinates



Orthographic Projection

* No homogenous projection needed

* We transform x_ to x_with linear interpolation

* We map input interval (I, r) — (-1, +1)




Orthographic Projection

* No homogenous projection needed

* We transformy_toy_ with linear interpolation

* We map input interval (b, t) — (-1, +1)

Mapping from y, to y,




Orthographic Projection

* No homogenous projection needed

* We transform z_to z_with linear interpolation

* We map input interval (-f, -n) — (+1, -1)

Mapping from z,, to z,,




Orthographic Projection

* Final 4x4 orthographic projection is

* [t is affine transformation W_=W_

2 . fthal
/xc\ ) 2 g I;-:Zf /xe\
ic Ml o el .;/e
G _2 f+ e
.| VR T |
0 0 0 |



Perspective vs. Parallel Projection

* Perspective projection
2> + Sjze varies inversely with distance - looks realistic

> - Distance and angles are not always preserved

> - Parallel lines do not always remain parallel

* Parallel projection

> + Good for exact measurements
> + Parallel lines remain parallel
> - Angles are not (in general) preserved

> - Less realistic looking



that was enough...
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