

Smoke

Lesson

10

Fluid

Fire and

Lesson 09 Outline

 Problem definition and motivations

 Mathematical Begrounds

 Fluid dynamics and Navier-Stokes equations

 Grid based MAC method

 Particle based SPH method

 Neighbor search for coupled particles

 Demos / tools / libs

Mathematical

Begrounds

Motivations

 Dynamics of incompressible fluids is governed by
the following Navier-Stokes equations

 Motivation: We need to understand the math
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F

Spatial Discretization

 Virtually split simulation space into finite elements
 Irregular finite elements

 Octrees, tetrahedral meshes, …

 Regular finite elements
 Regular grids

∆y

∆x

Scalar and Vector Fields

 Scalar field is a
function mapping a
location in the
simulation space to a
scalar value

0
10
20
30
40
50
60
70

 Vector field is a
function mapping a
location in the
simulation space to a
vector value

Scalar and Vector Field Notation

 Scalar field
 f: Rn → R
 f(x) = a

 2D/3D Scalar fields
 f(x, y) = a
 f(x, y, z) = a

 Vector field
 F: Rn → Rm

 F(x) = a

 2D/3D Vector fields
 F(x, y) = (u, v)
 F(x, y, z) = (u, v, w)
 u(x, y, z) = a
 v(x, y, z) = b
 w(x, y, z) = c

Calculus – Partial Derivative

 Partial Derivative (∂) of a function of several
variables is its derivative with respect to one of
those variables with the others held constant

f x x , y , z =
∂ f x , y , z 

∂ x
= limh0

f xh , y , z− f  x−h , y , z 
2h

f y x , y , z  =
∂ f  x , y , z

∂ y = limh 0
f x , yh , z − f x , y−h , z

2h

f z x , y , z  = ∂ f x , y , z
∂ z

= limh 0
f x , y , zh− f x , y , z−h

2h

Calculus – Finite Differences

 Forward derivative

 Backward derivative

 Central derivative

 Forward difference

 Backward difference

 Central difference

∂ f
∂ x

= limh0
f  xh , y , z − f  x , y , z 

h

∂ f
∂ x = limh0

f x , y , z− f x−h , y , z
h

∂ f
∂ x

= limh0
f xh , y , z − f x−h , y , z 

2h

f x
 =

f  xh , y , z− f  x , y , z
h

f x
− =

f  x , y , z − f  x−h , y , z
h

f x
0 =

f  xh , y , z− f  x−h , y , z
2h

Calculus – Gradient Operator

 Gradient of a scalar field is a vector field which
points in the direction of the greatest rate of
increase of the scalar field, and whose magnitude
is the greatest rate of change.

 Gradient operator (∇) is a vector of partial
derivatives

∇ =  ∂
∂ x ,

∂
∂ y ,

∂
∂ z  ∇ u = ∂u∂ x , ∂u∂ y , ∂u∂ z 

Calculus – Gradient Operator

 First-order finite differences

 Finite difference of Gradient Operator

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h

u = u , v ,w  u x , y , z  = u  x , y , z  , v  x , y , z  ,w  x , y , z 

∇ u x , y , z  = u x x , y , z  , v y x , y , z  ,w z  x , y , z  =

u  xh , y , z −u  x , y , z h
, v  x , yh , z −v x , y , z 

h
,w  x , y , zh−w  x , y , z 

h
,

Calculus – Divergence of field

 Divergence (∇⋅) is an operator that measures the
magnitude of a vector field’s source or sink at a
given point

 Divergence of a vector field is a (signed) scalar

u = u , v ,w 

∇°u = ∂∂ x ,∂∂ y ,∂∂ z °u , v ,w
= ∂u

∂ x
 ∂ v

∂ y
 ∂w

∂ z
= u xu yuz

Calculus – Divergence of field

 First-order finite differences

 Finite difference of Gradient Operator
u = u ,v , w  u x , y , z  = u  x , y , z  , v x , y , z  , w  x , y , z 

∇°u x , y , z  = u x x , y , z v y  x , y , z w z  x , y , z  =
u  xh , y , z −u  x , y , z v  x , yh , z −v  x , y , z w  x , y , zh−w  x , y , z 

h

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h

Calculus – Laplacian operator

 Laplacian roughly describes how much values in
the original field differ from their neighborhood
average

 Laplacian operator (∇2) is defined as the
divergence of a gradient

 Laplacian of a scalar u and vector u field

∇ 2 = ∇°∇ = ∂2

∂ x2
, ∂

2

∂ y2
, ∂

2

∂ z2

∇°∇ u = ∂∂ x ,∂∂ y ,∂∂ z °∂u∂ x ,∂u∂ y ,∂u∂ z  = ∂2u
∂ x2

∂2u
∂ y2

∂2u
∂ z2

∇ 2u = ... = ∇2u ,∇ 2v ,∇2w 

Calculus – Laplacian operator

 Second-order finite differences

 Finite difference of Laplacian operator

uxx x , y , z  = u  xh , y , z u x−h , y , z−2u x , y , z
h2

v yy x , y , z  = u x , yh , zu x , y−h , z −2u x , y , z
h2

w zz x , y , z  = u  x , y , zhu x , y , z−h−2u x , y , z
h2

∇ 2u x , y , z = u xx x , y , z u yy x , y , z u zz x , y , z =
u  xh , y , z u x−h , y , z u  x , yh , z u x , y−h , z u  x , y , zhu x , y , z−h−6u  x , y , z 

h2

 Fluid
 Dynamics

Motivations

 Dynamics of incompressible fluids is governed by
the following Navier-Stokes equations

 Motivation: We need to understand the physics
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F

Nomenclature

 Velocity vector field (u)
 Pressure scalar field (p)
 Density of fluid (ρ)
 Viscosity of fluid (υ)
 External force field (F)

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F

Navier-Stokes Equations

 Set of two Partial differential equations
 Continuity Equation – The rate at which mass

enters a system is equal to the rate at which mass
leaves the system.

 Momentum equation – Application of Newton’s
second law to fluid motion

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F

Continutity Equation

 Total mass must be always conserved.
 The rate at which mass enters a system is equal to

the rate at which mass leaves the system.
 The divergence of the velocity field must always

be zero

u = u , v ,w

∇ °u = uxu yu z=0

Momentum Equation

 Velocity field of fluid changes over time due to:

∂u
∂ t

=

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

∂u
∂ t

= −u°∇u

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

∂u
∂ t

= −u°∇u − 1

∇ p

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

 External body forces

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F

Time Derivative of Velocity

 At every location velocity field of fluid changes
due to several internal and external forces acting
on fluids body

 It’s time derivative simple measures the
evaluation of the velocity field in time

∂u
∂ t

=

Advection Term

 Advection term represents internal rate of
change of momentum due to velocity itself. To
conserve momentum it must moved (self
advected) through the space along with the fluid

 Mathematically advection is the scaled velocity by
it’s divergence

∂u
∂ t

= −u°∇u

Pressure term

 Pressure term defines internal forces generated
due to the pressure differences within the fluid

 For incompressible fluid pressure will be directly
coupled with conservation of mass (continuity
equation)

∂u
∂ t

= −u°∇u − 1

∇ p

Viscosity term

 Viscosity term captures internal friction forces
due to material friction.

 Viscosity forces cause the velocity of fluid to move
toward the neighbor average, see the Laplacian
operator

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u

External forces

 External forces usually contain gravity, wind, user
drag, contact forces or any other body forces.

 Simply we can modify the velocity field by any
external force while keeping natural motion of
fluid

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F

The

Method

Marker and Cell

Fluid simulation techniques

 Eulerian techniques
 Marker and Cell (MAC)
 Lattice Boltzmann Model (LBM)
 Other Finite Element/Difference Methods (FEM/FDM)

 Lagrangian techniques
 Smoothed Particle Hydrodynamics (SPH)
 Fluid Implicit Particle (FLIP)
 Particle in Cell (PIC)
 Moving Particle Semi Implicit (MPS)

Marker and Cell (MAC) Simulation

 Popular Eulerian fluid simulation technique in CG
 Originally invented by Harlow and Welch in 1965

 Key ideas
 Discretize simulation space into cubical grid
 Store fluid variables in a staggered fashion
 Numerically evolve Navies Stokes eq. on grid in time
 Advect mass-less marker particles in velocity field
 Update type (solid, fluid, empty) of cells according to the

location of marker particles

Staggered MAC grid

 Virtually decompose velocity vector field u into
three respective scalar fields (u,v,w)

 Store each velocity component on face center of
grid cell parallel to face normal

 In 2D - Vertical faces store horizontal component
and vice versa

 Store pressure in the
center of grid cell

MAC Grid: Cells

MAC Grid: u-velocity

MAC Grid: v-velocity

MAC Grid: pressure

Staggered MAC Grid

uij

vij

ui+1j

vij+1

ui-1j

uij+1

uij-1

vi+1j

vij-1

vi-1j

pijpi-1j

pij+1

pi+1j

pij-1

MAC Simulation

Stable MAC Algorithm

 Initialization
 Grid initialization
 Particle seeding

 Simulation loop
 Time step estimation
 Particle advection
 Grid update
 Boundary conditions
 Velocity update

MAC – Initialization

 Grid Initialization
 Set all velocities to zero

 Define initial (static) environment

 Label cells as Fluid, Solid or Empty

 Particle seeding
 Randomly seed mass-less marker particles inside

fluid body

MAC Initialization

Fluid cells
Fluid body

Empty
cells

Solid cells
Solid body

Fluid
particles

MAC Simulation Loop

 Calculate (set) simulation time step ∆t
 Advect marker particles along fluid velocity
 Update grid by marker particles
 Apply boundary conditions
 Advance the velocity field u

MAC – Time Step Estimation

 We need to achieve enough

 1) Stability prevent blow up

 2) Accuracy to simulate plausible

 Use Courant-Friedrichs-Lewy (CFL) condition
 The CFL condition states that the time step must be small

enough to make sure information does not travel across
more than one cell at a time.

 t   x
max ∣u∣,∣v∣,∣w∣

MAC – Particle Advection

 Given velocity field and time step we can freely
advect particles using some explicit scheme

 Standard Euler integration step

xnew = x + Δtu(x)

 Modified Euler (midpoint method)

x* = x + Δtu(x)
xnew = x + 0.5Δt[u(x) + u(x*)]

MAC – Grid update

 Particles have new locations
 Cell types must be updated
 Each cell containing at least one particle is

marked as fluid cell
 Solid cells are unchanged
 Other cells are marked as empty (air) cells

MAC – Boundary Conditions

 Two types of boundary condition
 Fluid / Solid boundary conditions
 Fluid / Air boundary conditions

 We need to satisfy them both for velocity and
pressure

 Velocity boundary conditions uses slip-conditions
and continuity conditions

 Pressure boundary conditions uses Dirichlet and
Neumann conditions (see Pressure calculation)

MAC – Velocity boundary conditions

 Free-slip fluid/solid condition:

 Fluid is freely allowed to slip along the solid/fluid
boundary face

 No-slip fluid/solid condition:

 Fluid is not allowed to slip along the solid/fluid
boundary face

MAC – Velocity Field Update

 Evaluate velocity with operator splitting in four
steps:

 1) Force - Apply external forces
 2) Advect - Apply advection
 3) Diffuse - Apply viscosity
 4) Project - Calculate and apply pressure

u(x, t) = w
0
force → w

1
advect → w

1
diffuse → w

1
project → w

4
 = u(x, t+h)

MAC – Apply External Forces

 Use simple explicit Euler to integrate force fields
 Force field is usually gravity or wind body force

w
1
(x) = w

0
(x) + ΔtF(x,t)

MAC – Apply Velocity Advection

 We want to know how will be the velocity advected
over the time step

 Simple Euler scheme brings instability or extremely
small time steps must be taken

 Method of characteristics is unconditionally
stable, allows large time steps – semi Implicit
advection

MAC – Semi-implicit Advection

 Suppose simple particle advection
 During time step particle will travel along the blue

path in the velocity field and can carry any
scalar/vector with it

 Let p(x,s) be the
location of particle
at time s

p(x ,0)=xp(x , ∆t)

p(x , s)

MAC – Semi-implicit Advection

 Key idea – trace particle in negative velocity and
find which velocity will be advected to particles
location

 Use bilinear interpolation
of values in green cells

p(x ,-∆t)p(x ,0)=x

MAC – Semi-implicit Advection

 Bilinear interpolation is always bounded,
advection is unconditionally stable

 Particle back-tracing must be done separately for
each velocity dimension (scalar field)

 If particle tracer is simple Euler with ∆t time step
semi-implicit advection can be written as

w
2
(x) = w

1
(p(x, -Δt))

w
2
(x) = w

1
(x - Δtw

1
(x))

MAC – Applying Viscosity

 Explicit and Implicit Euler Scheme

x(t + Δt) = x(t) + Δt x'(t) (Explicit Euler)
x(t + Δt) - Δt x'(t) = x(t) (Implicit Euler)

 Implicit viscosity application (sparse lin. eq. Solver)

dw
2
(x)/dt = ∇2w

2
(x)

w
3
(x) - Δt ∇2w

3
(x)= w

2
(x)

(I - Δt ∇2)w
3
(x)= w

2
(x)

Ax = b where A = (I - Δt ∇2) (Sparse system)

MAC – Calculating Pressure

 For solving pressure we use implicit Euler and
continuity condition

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)

0 = ∇•u = ∇•w
4
(x) = ∇•w

3
(x) - Δt∇2p(x)

∇2p(x) = ∇•w
3
(x)/Δt (Poisson Equation)

Ax=b where A=∇2 (Sparse system)

MAC – Pressure Boundary Conditions

 Neumann boundary condition
 Set pressure in solid cells equal to fluid pressure in neighbor

fluid cell
 Pressure gradient along boundary face will be zero =

Neumann boundary condition

 Dirichlet boundary condition
 Set pressure in empty (air) cells to zero = Dirichlet boundary

condition

 Next slides demonstrate Poisson equation
evaluation satisfying Neumann and Dirichlet
boundary conditions

MAC – Poisson equation

MAC – Poisson equation

MAC – Poisson equation

MAC – Poisson equation

MAC – Applying Pressure

 Once the pressure is known we use explicit Euler
to find new velocity

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)

Smoothed Particle HydrodynamicsParticle

Smoothed Particle Hydrodynamics

 Historical origin
 Invented by Monaghan and Lucy in astrophysics for

Simulating flow of interstellar gas

 Classification
 Lagrangian mesh-less particle-based
 Based on local integral function representation

(convolution)

 Principles
 Represent fluid with finite number of particles
 Store all quantities only on particle positions only
 Approximate field quantities by kernel convolution
 Use Lagrangian formulation of Navies-Stokes equations for

particle dynamics

SPH – Method Overview

 Benefits
 Mesh-less (grid-less) particle-based
 No advection term in Navier Stokes equations
 Inherently mass conserving (finite number of particles)
 Straightforward multiphase extension
 Spatially unlimited simulation domain
 Suitable for interactive applications

 Drawbacks
 Difficult to achieve incompressible fluid
 Time consuming Neighbor search algorithm
 Boundary deficiency (e.g. in density estimation)

SPH – Approximation Principle

 Assume the following notation:
 A(r) – Scalar (or vector) field, Ai = A(ri)

 δ(r) – Dirac delta function
 Wh(r) – Radial symmetric smoothing kernel

 ri – Position of i-th particle

 Vi – Volume of i-th particle

SPH – Approximation Principle

 Integral representation of function

A(r) = ∫
r
A(r')δ(r - r')dr' = A*δ

 Approximation of function by convolution

A(r) ≈ A*W
h
 = ∫

r
A(r')W

h
(r - r')dr'

 Particle-base approximation of function

<A(r)> = ∑
j
V

j
A

j
W

h
(r - r

j
) ≈ A*W

h
≈ A(r)

SPH – Gradient and Laplacian

 Basic Gradient Approximation Formula (BGAF)

∇
b
(A) = <∇A(r)> = ∑

j
V

j
A

j
∇W

h
(r - r

j
)

 Basic Laplacian Approximation Formula (BLAF)

∇2
b
(A) = <∇2A(r)> = ∑

j
V

j
A

j
∇2W

h
(r - r

j
)

SPH – Gradient and Laplacian

 Difference Gradient Approximation Formula (DGAF)

∇
b
(A) = (1/ρ)∑

j
V

j
ρ

j
(A

j
- A)∇W

h
(r - r

j
)

 Symmetric Gradient Approximation Formula (SGAF)

∇
s
(A) = ρ∑

j
V

j
ρ

j
(A

j
/ρ

j
+ A/ρ)∇W

h
(r - r

j
)

 Zero Laplacian Approximation Formula (ZLAF)

∇2
z
(A) = ∑

j
V

j
(A

j
- A)∇2W

h
(r - r

j
)

SPH – Kernel functions: W
h
(r)

 Basic kernel function properties
 Compact support
 Partition of unity
 Symmetry
 Limit to delta function

 |r| ≥ h → W
h
(r) = 0 (Compact Support)

 ∫
r
W

h
(r)dr = 1 (Partition of unity)

 ∫
r
rW

h
(r)dr = 0 (Symmetry)

 Lim
h → 0

W
h
(r) = δ(r) (Limit to delta function)

SPH – Kernel functions

Kernel function

Kernel function derivative

Kernel function second derivative

Wpoly Wpress Wvisco

SPH – Navier Stokes Equations

 Eulerian formulation

∂p/∂t + v•∇p = – p∇•v = 0

p(∂v/∂t + v•∇v) = –∇P + μ∇2v + pf

 Lagrangian formulation

dp/dt = ∂p/∂t + v•∇p = – p∇•v = 0

dv/dt = ∂v/∂t + v•∇v = –∇P/p + μ∇2v/p + a =

 = apress + avisco + aext

SPH – Evaluating Fluid Properties

 Density and pressure estimations

p(r
i
) = <p(r

i
)> = ∑

j
V

j
p

j
W

h
(r – r

j
) = ∑

j
m

j
p

j
W

h
(r – r

j
)

P(r
i
) = kgas((p

i
/p

0
)y -1) (State equation)

 Pressure, viscosity and external forces

fpress(r
i
)=-(m

i
/p

i
)∇

s
(p)= ∑

j
m

i
m

j
(P

j
/p

j
 + P

i
/p

i
)∇W

h
press(r

i
- r

j
)

fvisco(r
i
) = -(m

i
/p

i
)∇2

z
(μv) = ∑

j
V

i
V

j
(v

j
 - v

i
)∇2W

h
visco(r

i
 - r

j
)

fext(r
i
) = m

i
a

i
 = fint + fgrav + …

SPH – Fluid Simulation Algorithm

 Collision Detection
 Find approximate and precise neighbor particle pairs
 Find closest points on boundaries

 SPH Dynamics
 Accumulate densities
 Calculate pressure
 Accumulate pressure, viscosity forces and color field
 Apply surface tension force
 Apply boundary collision forces

 Time integration (ODE)
 Use leap-frog to integrate positions and velocities

Neighbor search with Z-indexing

 Neighbor search: Given a particle find all particles
whose distance to this particle is less than some
threshold (support radius in SPH)
 This can be O(n2) problem → very expensive for large

number of particles
 In SPH simulations it is in average case an O(n) problem

 Proposed solution: Z-indexing and radix sort

 Z-indexing: A strategy create a linear index of
particles in a 3D grid while maintaining good
spatial locality of particles enumerated in index
order.

 Radix-sort: O(n) sort for bounded values

Z-indexing : Index order

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110 111111

x = 0
000

x = 1
001

x = 2
010

x = 3
011

x = 4
100

x = 5
101

x = 6
110

x = 7
111

y = 0
000

y = 1
001

y = 2
010

y = 3
011

y = 4
100

y = 5
101

y = 6
110

y = 7
111

Z-Indexing: Index Structure

 Given (8-bit) coordinates (i,j,k) of some cell
 i = i7i6i5i4i3i2i1i0 (eg 45 = 00101101)

 j = j7j6j5j4j3j2j1j0 (eg 135 = 10000111)

 k = k7k6k5k4k3k2k1k0 (eg 209 = 11010001)

 The interleaved (24-bit) Z-index of cell (i,j,k) is:
 Index = k7j7i7k6j6i6k5j5i5k4j4i4k3j3i3k2j2i2k1j1i1k0j0i0

 Index = 110 100 001 100 001 011 010 111

 We precompute tables i
24

, j
24

 and k
24

 and get index

 Index = i
24

 or j
24

 or k
24

 (or is bit-wise or operation)

 Tables i
24

, j
24

 and k
24

 are stored as CUDA textures

Z-Indexing: Index Structure

 For each i (0..2n) precompute i24 as
 i24 = 00i700i600i500i400i300i200i100i0

 i24 = 000000001000001001000001

 For each j (0..2n) precompute j24 as
 j24 = 0j700j600j500j400j300j200j100j00

 j24 = 010000000000000010010010

 For each k (0..2n) precompute k24 as
 k24 = k700k600k500k400k300k200k100k000

 k24 = 100100000100000000000100

Z-Indexing: Summary

 The simulation domain is divided into a virtual
indexing grid

 Grid location of a particle is used to determine its
bit-interleaved Z-index

 The Z-indices are computed very efficiently in
parallel using a table look-up approach and
binary “or”

 Z-indices of particles being within some 2n spatial
block are contiguous

 Before NB particles are sorted based on Z-indices
using parallel CUDA radix-sort

Demos / Tools / Libs

 SPH water demo  MAC fire/smoke demo

The End
… endless torture is over …

… fire and smoke next time :) ...

