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Lesson 09 Outline

 Problem definition and motivations

 Mathematical Begrounds

 Fluid dynamics and Navier-Stokes equations

 Grid based MAC method

 Particle based SPH method

 Neighbor search for coupled particles

 Demos / tools / libs
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Motivations

 Dynamics of incompressible fluids is governed by 
the following Navier-Stokes equations

 Motivation: We need to understand the math 
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Spatial Discretization

 Virtually split simulation space into finite elements
 Irregular finite elements 

 Octrees, tetrahedral meshes, …

 Regular finite elements
 Regular grids

∆y

∆x



    

Scalar and Vector Fields

 Scalar field is a 
function mapping a 
location in the 
simulation space to a 
scalar value
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 Vector field is a 
function mapping a 
location in the 
simulation space to a 
vector value



    

Scalar and Vector Field Notation

 Scalar field
 f: Rn → R
 f(x) = a

 2D/3D Scalar fields
 f(x, y) = a
 f(x, y, z) = a

 Vector field
 F: Rn → Rm

 F(x) = a

 2D/3D Vector fields
 F(x, y) = (u, v)
 F(x, y, z) = (u, v, w)
 u(x, y, z) = a
 v(x, y, z) = b
 w(x, y, z) = c



    

Calculus – Partial Derivative

 Partial Derivative (∂) of a function of several 
variables is its derivative with respect to one of 
those variables with the others held constant

f x x , y , z =
∂ f x , y , z 

∂ x
= limh0

f xh , y , z− f  x−h , y , z 
2h

f y x , y , z  =
∂ f  x , y , z

∂ y = limh 0
f x , yh , z − f x , y−h , z

2h

f z x , y , z  = ∂ f x , y , z
∂ z

= limh 0
f x , y , zh− f x , y , z−h

2h



    

Calculus – Finite Differences

 Forward derivative

 Backward derivative

 Central derivative

 Forward difference

 Backward difference

 Central difference

∂ f
∂ x

= limh0
f  xh , y , z − f  x , y , z 

h

∂ f
∂ x = limh0

f x , y , z− f x−h , y , z
h

∂ f
∂ x

= limh0
f xh , y , z − f x−h , y , z 

2h

f x
 =

f  xh , y , z− f  x , y , z
h

f x
− =

f  x , y , z − f  x−h , y , z
h

f x
0 =

f  xh , y , z− f  x−h , y , z
2h



    

Calculus – Gradient Operator

 Gradient of a scalar field is a vector field which 
points in the direction of the greatest rate of 
increase of the scalar field, and whose magnitude 
is the greatest rate of change.

 Gradient operator (∇) is a vector of partial 
derivatives

∇ =  ∂
∂ x ,

∂
∂ y ,

∂
∂ z  ∇ u = ∂u∂ x , ∂u∂ y , ∂u∂ z 



    

Calculus – Gradient Operator

 First-order finite differences

 Finite difference of Gradient Operator

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h

u = u , v ,w  u x , y , z  = u  x , y , z  , v  x , y , z  ,w  x , y , z 

∇ u x , y , z  = u x x , y , z  , v y x , y , z  ,w z  x , y , z  =

u  xh , y , z −u  x , y , z h
, v  x , yh , z −v x , y , z 

h
,w  x , y , zh−w  x , y , z 

h
,



    

Calculus – Divergence of field

 Divergence (∇⋅) is an operator that measures the 
magnitude of a vector field’s source or sink at a 
given point

 Divergence of a vector field is a (signed) scalar

u = u , v ,w 

∇°u = ∂∂ x ,∂∂ y ,∂∂ z °u , v ,w
= ∂u

∂ x
 ∂ v

∂ y
 ∂w

∂ z
= u xu yuz



    

Calculus – Divergence of field

 First-order finite differences

 Finite difference of Gradient Operator
u = u ,v , w  u x , y , z  = u  x , y , z  , v x , y , z  , w  x , y , z 

∇°u x , y , z  = u x x , y , z v y  x , y , z w z  x , y , z  =
u  xh , y , z −u  x , y , z v  x , yh , z −v  x , y , z w  x , y , zh−w  x , y , z 

h

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h



    

Calculus – Laplacian operator

 Laplacian roughly describes how much values in 
the original field differ from their neighborhood 
average 

 Laplacian operator (∇2) is defined as the 
divergence of a gradient

 Laplacian of a scalar u and vector u field

∇ 2 = ∇°∇ = ∂2

∂ x2
, ∂

2

∂ y2
, ∂

2

∂ z2

∇°∇ u = ∂∂ x ,∂∂ y ,∂∂ z °∂u∂ x ,∂u∂ y ,∂u∂ z  = ∂2u
∂ x2

∂2u
∂ y2

∂2u
∂ z2

∇ 2u = ... = ∇2u ,∇ 2v ,∇2w 



    

Calculus – Laplacian operator

 Second-order finite differences

 Finite difference of Laplacian operator

uxx x , y , z  = u  xh , y , z u x−h , y , z−2u x , y , z
h2

v yy x , y , z  = u x , yh , zu x , y−h , z −2u x , y , z
h2

w zz x , y , z  = u  x , y , zhu x , y , z−h−2u x , y , z
h2

∇ 2u x , y , z = u xx x , y , z u yy x , y , z u zz x , y , z =
u  xh , y , z u x−h , y , z u  x , yh , z u x , y−h , z u  x , y , zhu x , y , z−h−6u  x , y , z 

h2
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Motivations

 Dynamics of incompressible fluids is governed by 
the following Navier-Stokes equations

 Motivation: We need to understand the physics  
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Nomenclature

 Velocity vector field (u)
 Pressure scalar field (p)
 Density of fluid (ρ)
 Viscosity of fluid (υ)
 External force field (F)

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Navier-Stokes Equations

 Set of two Partial differential equations
 Continuity Equation – The rate at which mass 

enters a system is equal to the rate at which mass 
leaves the system. 

 Momentum equation – Application of Newton’s 
second law to fluid motion

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Continutity Equation

 Total mass must be always conserved.
 The rate at which mass enters a system is equal to 

the rate at which mass leaves the system.
 The divergence of the velocity field must always 

be zero

u = u , v ,w

∇ °u = uxu yu z=0



    

Momentum Equation

 Velocity field of fluid changes over time due to:

∂u
∂ t

=



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

∂u
∂ t

= −u°∇u



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

∂u
∂ t

= −u°∇u − 1

∇ p



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

 External body forces

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F



    

Time Derivative of Velocity

 At every location velocity field of fluid changes 
due to several internal and external forces acting 
on fluids body

 It’s time derivative simple measures the 
evaluation of the velocity field in time

∂u
∂ t

=



    

Advection Term

 Advection term represents internal rate of 
change of momentum due to velocity itself. To 
conserve momentum it must moved (self 
advected) through the space along with the fluid

 Mathematically advection is the scaled velocity by 
it’s divergence

∂u
∂ t

= −u°∇u



    

Pressure term

 Pressure term defines internal forces generated 
due to the pressure differences within the fluid

 For incompressible fluid pressure will be directly 
coupled with conservation of mass (continuity 
equation)

∂u
∂ t

= −u°∇u − 1

∇ p



    

Viscosity term

 Viscosity term captures internal friction forces 
due to material friction.

 Viscosity forces cause the velocity of fluid to move 
toward the neighbor average, see the Laplacian 
operator

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u



    

External forces

 External forces usually contain gravity, wind, user 
drag, contact forces or any other body forces.

 Simply we can modify the velocity field by any 
external force while keeping natural motion of 
fluid

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F



    

The 

Method

Marker and Cell



    

Fluid simulation techniques

 Eulerian techniques
 Marker and Cell (MAC)
 Lattice Boltzmann Model (LBM)
 Other Finite Element/Difference Methods (FEM/FDM)

 Lagrangian techniques
 Smoothed Particle Hydrodynamics (SPH)
 Fluid Implicit Particle (FLIP)
 Particle in Cell (PIC)
 Moving Particle Semi Implicit (MPS)



    

Marker and Cell (MAC) Simulation  

 Popular Eulerian fluid simulation technique in CG
 Originally invented by Harlow and Welch in 1965

 Key ideas
 Discretize simulation space into cubical grid
 Store fluid variables in a staggered fashion
 Numerically evolve Navies Stokes eq. on grid in time
 Advect mass-less marker particles in velocity field
 Update type (solid, fluid, empty) of cells according to the 

location of marker particles



    

Staggered MAC grid

 Virtually decompose velocity vector field u into 
three respective scalar fields (u,v,w)

 Store each velocity component on face center of 
grid cell parallel to face normal

 In 2D - Vertical faces store horizontal component  
and vice versa

 Store pressure in the                                                
center of grid cell



    

MAC Grid: Cells



    

MAC Grid: u-velocity



    

MAC Grid: v-velocity



    

MAC Grid: pressure



    

Staggered MAC Grid

uij

vij

ui+1j

vij+1

ui-1j

uij+1

uij-1

vi+1j

vij-1

vi-1j

pijpi-1j

pij+1

pi+1j

pij-1



    

MAC Simulation



    

Stable MAC Algorithm

 Initialization
 Grid initialization
 Particle seeding 

 Simulation loop
 Time step estimation
 Particle advection 
 Grid update
 Boundary conditions 
 Velocity update



    

MAC – Initialization

 Grid Initialization
 Set all velocities to zero

 Define initial (static) environment

 Label cells as Fluid, Solid or Empty

 Particle seeding
 Randomly seed mass-less marker particles inside 

fluid body



    

MAC Initialization

Fluid cells
Fluid body

Empty
cells

Solid cells
Solid body

Fluid
particles



    

MAC Simulation Loop

 Calculate (set) simulation time step ∆t
 Advect marker particles along fluid velocity 
 Update grid by marker particles
 Apply boundary conditions 
 Advance the velocity field u



    

MAC – Time Step Estimation

 We need to achieve enough

 1) Stability prevent blow up 

 2) Accuracy to simulate plausible

 Use Courant-Friedrichs-Lewy (CFL) condition
 The CFL condition states that the time step must be small 

enough to make sure information does not travel across 
more than one cell at a time.

 t   x
max ∣u∣,∣v∣,∣w∣



    

MAC – Particle Advection

 Given velocity field and time step we can freely 
advect particles using some explicit scheme

 Standard Euler integration step

xnew = x + Δtu(x)

 Modified Euler (midpoint method)

x* = x + Δtu(x)
xnew = x + 0.5Δt[u(x) + u(x*)]



    

MAC – Grid update

 Particles have new locations
 Cell types must be updated
 Each cell containing at least one particle is 

marked as fluid cell
 Solid cells are unchanged
 Other cells are marked as empty (air) cells



    

MAC – Boundary Conditions

 Two types of boundary condition
 Fluid / Solid boundary conditions
 Fluid / Air boundary conditions

 We need to satisfy them both for velocity and 
pressure

 Velocity boundary conditions uses slip-conditions 
and continuity conditions

 Pressure boundary conditions uses Dirichlet and 
Neumann conditions (see Pressure calculation)



    

MAC – Velocity boundary conditions

 Free-slip fluid/solid condition:

 Fluid is freely allowed to slip along the solid/fluid 
boundary face

 No-slip fluid/solid condition:

 Fluid is not allowed to slip along the solid/fluid 
boundary face



    

MAC – Velocity Field Update 

 Evaluate velocity with operator splitting in four 
steps:

 1) Force - Apply external forces
 2) Advect - Apply advection
 3) Diffuse - Apply viscosity
 4) Project - Calculate and apply pressure

u(x, t) = w
0
force → w

1
advect → w

1
diffuse → w

1
project → w

4
 = u(x, t+h)



    

MAC – Apply External Forces

 Use simple explicit Euler to integrate force fields
 Force field is usually gravity or wind body force

w
1
(x) = w

0
(x) + ΔtF(x,t)



    

MAC – Apply Velocity Advection

 We want to know how will be the velocity advected 
over the time step

 Simple Euler scheme brings instability or extremely 
small time steps must be taken

 Method of characteristics is unconditionally 
stable, allows large time steps – semi Implicit 
advection



    

MAC – Semi-implicit Advection

 Suppose simple particle advection
 During time step particle will travel along the blue 

path in the velocity field  and can carry any 
scalar/vector with it

 Let p(x,s) be the                                                      
location of particle                                                          
at time s

p(x ,0)=xp(x , ∆t)

p(x , s)



    

MAC – Semi-implicit Advection

 Key idea – trace particle in negative velocity and 
find which velocity will be advected to particles 
location

 Use bilinear interpolation                                            
of values in green cells 

p(x ,-∆t)p(x ,0)=x



    

MAC – Semi-implicit Advection

 Bilinear interpolation is always bounded, 
advection is unconditionally stable

 Particle back-tracing must be done separately for 
each velocity dimension (scalar field)

 If particle tracer is simple Euler with ∆t time step 
semi-implicit advection can be written as

w
2
(x) = w

1
(p(x, -Δt))

w
2
(x) = w

1
(x - Δtw

1
(x))



    

MAC – Applying Viscosity

 Explicit and Implicit Euler Scheme

x(t + Δt) = x(t) + Δt x'(t)                (Explicit Euler)
x(t + Δt) - Δt x'(t) = x(t)                 (Implicit Euler)

 Implicit viscosity application (sparse lin. eq. Solver)

dw
2
(x)/dt = ∇2w

2
(x)

w
3
(x) - Δt ∇2w

3
(x)= w

2
(x)

(I - Δt ∇2)w
3
(x)= w

2
(x)     

Ax = b where A = (I - Δt ∇2)               (Sparse system)



    

MAC – Calculating Pressure

 For solving pressure we use implicit Euler and 
continuity condition

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)

0 = ∇•u = ∇•w
4
(x) = ∇•w

3
(x) - Δt∇2p(x)

∇2p(x) = ∇•w
3
(x)/Δt                       (Poisson Equation)

Ax=b    where    A=∇2                     (Sparse system)



    

MAC – Pressure Boundary Conditions

 Neumann boundary condition
 Set pressure in solid cells equal to fluid pressure in neighbor 

fluid cell
 Pressure gradient along boundary face will be zero = 

Neumann boundary condition

 Dirichlet boundary condition
 Set pressure in empty (air) cells to zero = Dirichlet boundary 

condition

 Next slides demonstrate Poisson equation 
evaluation satisfying Neumann and Dirichlet 
boundary conditions



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Applying Pressure

 Once the pressure is known we use explicit Euler 
to find new velocity

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)



    

Smoothed Particle HydrodynamicsParticle



    

Smoothed Particle Hydrodynamics

 Historical origin
 Invented by Monaghan and Lucy in astrophysics for 

Simulating flow of interstellar gas

 Classification
 Lagrangian mesh-less particle-based
 Based on local integral function representation 

(convolution)

 Principles
 Represent fluid with finite number of particles
 Store all quantities only on particle positions only
 Approximate field quantities by kernel convolution
 Use Lagrangian formulation of Navies-Stokes equations for 

particle dynamics



    

SPH – Method Overview

 Benefits
 Mesh-less (grid-less) particle-based
 No advection term in Navier Stokes equations
 Inherently mass conserving (finite number of particles)
 Straightforward multiphase extension
 Spatially unlimited simulation domain 
 Suitable for interactive applications

 Drawbacks
 Difficult to achieve incompressible fluid
 Time consuming Neighbor search algorithm
 Boundary deficiency (e.g. in density estimation)



    

SPH – Approximation Principle

 Assume the following notation:
 A(r) – Scalar (or vector) field, Ai = A(ri) 

 δ(r) – Dirac delta function
 Wh(r) – Radial symmetric smoothing kernel

 ri – Position of i-th particle

 Vi – Volume of i-th particle



    

SPH – Approximation Principle

 Integral representation of function

A(r) = ∫
r
A(r')δ(r - r')dr' = A*δ

 Approximation of function by convolution

A(r) ≈ A*W
h
 = ∫

r
A(r')W

h
(r - r')dr'

 Particle-base approximation of function

<A(r)> = ∑
j
V

j
A

j
W

h
(r - r

j
) ≈ A*W

h 
≈ A(r)



    

SPH – Gradient and Laplacian

 Basic Gradient Approximation Formula (BGAF)

∇
b
(A) = <∇A(r)> = ∑

j
V

j
A

j
∇W

h
(r - r

j
)

 Basic Laplacian Approximation Formula (BLAF)

∇2
b
(A) = <∇2A(r)> = ∑

j
V

j
A

j
∇2W

h
(r - r

j
)



    

SPH – Gradient and Laplacian

 Difference Gradient Approximation Formula (DGAF)

∇
b
(A) = (1/ρ)∑

j
V

j
ρ

j
(A

j 
- A)∇W

h
(r - r

j
)

 Symmetric Gradient Approximation Formula (SGAF)

∇
s
(A) = ρ∑

j
V

j
ρ

j
(A

j
/ρ

j 
+ A/ρ)∇W

h
(r - r

j
)

 Zero Laplacian Approximation Formula (ZLAF)

∇2
z
(A) = ∑

j
V

j
(A

j 
- A)∇2W

h
(r - r

j
)



    

SPH – Kernel functions: W
h
(r)

 Basic kernel function properties
 Compact support
 Partition of unity
 Symmetry
 Limit to delta function

 |r| ≥ h → W
h
(r) = 0          (Compact Support)

 ∫
r
W

h
(r)dr = 1                      (Partition of unity)

 ∫
r
rW

h
(r)dr = 0                    (Symmetry)

 Lim
h → 0

W
h
(r) = δ(r)            (Limit to delta function)



    

SPH – Kernel functions

Kernel function

Kernel function derivative

Kernel function second derivative

Wpoly Wpress Wvisco



    

SPH – Navier Stokes Equations

 Eulerian formulation

∂p/∂t + v•∇p = – p∇•v = 0

p( ∂v/∂t + v•∇v ) = –∇P + μ∇2v + pf

 Lagrangian formulation

dp/dt = ∂p/∂t + v•∇p = – p∇•v = 0

dv/dt = ∂v/∂t + v•∇v = –∇P/p + μ∇2v/p + a =

           = apress + avisco + aext



    

SPH – Evaluating Fluid Properties

 Density and pressure estimations

p(r
i
) = <p(r

i
)> = ∑

j
V

j
p

j
W

h
(r – r

j
) = ∑

j
m

j
p

j
W

h
(r – r

j
)

P(r
i
) = kgas((p

i
/p

0
)y  -1)                    (State equation)

 Pressure, viscosity and external forces

fpress(r
i
)=-(m

i
/p

i
)∇

s
(p)= ∑

j
m

i
m

j
(P

j
/p

j
 + P

i
/p

i
)∇W

h
press(r

i
- r

j
)

fvisco(r
i
) = -(m

i
/p

i
)∇2

z
(μv) = ∑

j
V

i
V

j
(v

j
 - v

i
)∇2W

h
visco(r

i
 - r

j
)

fext(r
i
) = m

i
a

i
 = fint + fgrav + … 



    

SPH – Fluid Simulation Algorithm

 Collision Detection
 Find approximate and precise neighbor particle pairs
 Find closest points on boundaries

 SPH Dynamics
 Accumulate densities
 Calculate pressure
 Accumulate pressure, viscosity forces and color field
 Apply surface tension force
 Apply boundary collision forces 

 Time integration (ODE)
 Use leap-frog to integrate positions and velocities



    



    

Neighbor search with Z-indexing

 Neighbor search: Given a particle find all particles 
whose distance to this particle is less than some 
threshold (support radius in SPH)
 This can be O(n2) problem → very expensive for large 

number of particles
 In SPH simulations it is in average case an O(n) problem

 Proposed solution: Z-indexing and radix sort

 Z-indexing: A strategy create a linear index of 
particles in a 3D grid while maintaining good 
spatial locality of particles enumerated in index 
order.

 Radix-sort: O(n) sort for bounded values



    

Z-indexing : Index order

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110 111111

x = 0
000

x = 1
001

x = 2
010

x = 3
011

x = 4
100

x = 5
101

x = 6
110

x = 7
111

y = 0
000

y = 1
001

y = 2
010

y = 3
011

y = 4
100

y = 5
101

y = 6
110

y = 7
111



    

Z-Indexing: Index Structure

 Given (8-bit) coordinates (i,j,k) of some cell 
 i = i7i6i5i4i3i2i1i0 (eg  45 = 00101101)

 j = j7j6j5j4j3j2j1j0 (eg 135 = 10000111)

 k = k7k6k5k4k3k2k1k0 (eg 209 = 11010001)

 The interleaved (24-bit) Z-index of cell (i,j,k) is:
 Index = k7j7i7k6j6i6k5j5i5k4j4i4k3j3i3k2j2i2k1j1i1k0j0i0

 Index = 110 100 001 100 001 011 010 111

 We precompute tables i
24

, j
24

 and k
24

 and get index

 Index = i
24

 or j
24

 or k
24

 (or is bit-wise or operation)

 Tables i
24

, j
24

 and k
24

 are stored as CUDA textures



    

Z-Indexing: Index Structure

 For each i (0..2n) precompute i24 as
 i24 = 00i700i600i500i400i300i200i100i0

 i24 = 000000001000001001000001

 For each j (0..2n) precompute j24 as
 j24 = 0j700j600j500j400j300j200j100j00

 j24 = 010000000000000010010010

 For each k (0..2n) precompute k24 as
 k24 = k700k600k500k400k300k200k100k000

 k24 = 100100000100000000000100



    

Z-Indexing: Summary

 The simulation domain is divided into a virtual 
indexing grid

 Grid location of a particle is used to determine its 
bit-interleaved Z-index

 The Z-indices are computed very efficiently in 
parallel using a table look-up approach and 
binary “or”

 Z-indices of particles being within some 2n spatial 
block are contiguous

 Before NB particles are sorted based on Z-indices 
using parallel CUDA radix-sort



    

Demos / Tools / Libs

 SPH water demo  MAC fire/smoke demo



    

The End
… endless torture is over … 

… fire and smoke next time :) ...


