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Overview

 Today
— Blind Monte Carlo Integration
— Intelligent Monte Carlo Integration

— Discrepancy and Basic Quasi Monte-Carlo
Sampling
— Direct Lighting Computation
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Blind Monte Carlo Integration

 Blind Methods
— No information about integrand

e Goal:
— Fast numerical integration
— Low variance
— At low sampling rates
— Maximize Efficiency = 1/ (Variance * Cost)

e Algorithms
— Crude Monte Carlo Sampling
— Rejection Sampling
— Sequential Tests
— Blind Stratified Sampling (Jittering)
— Weighted Monte Carlo Sampling
— Quasi Monte Carlo Sampling
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Blind Monte Carlo Integration

« Crude Monte Carlo Integration
— Computing the area under f(x)

1
6=\ f(x)dx
i

— Law of large numbers provides for independent and uniformly
distributed random variables g, in [0..1]

— Standard deviation

O
J_z—f

f m

~diminishing return®
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Blind Monte Carlo Integration

« Rejection Sampling
— Define

0 y> f(x)
8(X,y)=1 :
1 y<fx)

— Numerical integration

« Like crude Monte Carlo, with two random variables
— HW N

g ——Z ¢(&..&,)  oringeneral
A i=1

— Variance Is always WOrSe 1orH
as for crude MC &
6 1,2

— Rule:
Wherever possible
use exact values instead
of estimates

>

0 ‘;.,, ior W

Realistic Image Synthesis — Monte Carlo Sampling



Blind Monte Carlo Integration

 Sequential Sampling
— Central Limit Theorem

lim Pr{ﬂ, —E[Y]< ! ‘f I:L e 2 dx
N —co | J N ”J LT
« Approach
— Send rays until confidence in the estimate is high
enough

« Student t-distribution [Purgathofer, 1987]
» Chi-squared distribution [Lee et al, 1985]
— Problem:

« Usually too conservative
* Requires too many samples
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Blind Monte Carlo Integration

e Blind Stratified Sampling (Jittering )
— Goal: uniform distribution of samples
— Subdivision of domain of the function into k strata

? o - F f(a;‘_l + ((II- o ai—l)gj)

— With independent
random variables
* Variance of sum
IS sum of variances
— In general lower
variance of f over
smaller intervals

a; —da;_,

= N,
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Blind Monte Carlo Integration

- Example for Stratification
— Shadow boundary

Fy, = %Zil N,F, withN=>"N,

— N strata
— One sample per stratum (N.=1)

1 N
VIFy 1= inﬂv[‘vf]=

1 JN
- 4 ZEVIF)

_VIF]
- A LS

— Quadratic improvement of
efficiency with number of strata
for smooth functions

V=" (X —E(X))
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Blind Monte Carlo Integration

« Weighted Monte Carlo Sampling [Yakowitz 78]
— Goal: Accurate coverage of range of f(x)
— Weighting with area of Voronoi region of each sample

_ N N
f=2wfE) YW,
i=1 i=1

— Voronoi region of a point p;:
« All points p that are closer to p;than any other point

A
f
— Better convergence at 1 &

low dimensions
« O(1/NZ9)
 if f has continuous
second derivative
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Blind Monte Carlo Integration

- Two Examples for weighted Monte Carlo

R

1

F(x)

F(x)

[
L

0.5 —— Crude MC

s Weighted MC
0.4
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Blind Monte Carlo Integration

* Quasi-Monte-Carlo .
]
]
— Goal: o
« Uniform coverage of range

« Low ,Discrepancy” (D)

. 1
D'(P)=sup ||z, (0)dx——3 7,(x)
1=[ T l0ap=t® s J_ LN i=0

k' . W
Ares Estimate of Area

For all rectangle
anchored at origin

« s: Number of dimensions, I: unit interval,
%: characteristic function, P: sequence of points

Identical algorithms except for random number
generator
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Blind Monte Carlo Integration

- Halton-Sequence (N-dimensional)
= [@z{f}a},@{m},@ﬁ{m},...,gﬁﬁy {m})

— ¢,(m): radical inverse
« Reflect bit pattern of m in basis r at decimal point
« 0,(26,4)= 0,(11010,)=0.01011,=11/32
o 05(19,)= 04( 2014)=0.102,=11/27

— py: N-th prime number

— o: O(1/N) for smooth functions

— Uniform distribution:
« More significant bit vary faster
« Visit all intervals of 2k before intervals of s-(k+1)

« Hammersley-Sequence (N-dimensional)
§m :["”"JN! .ﬂjg{”“s Qj}“”}, ﬂjﬁ{.r'?”.,...,({jpﬂ“?!})
- Zaremba-Sequenz, ...
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Sample-Distributions PEE

» Visual evaluation of RIS ERSTEEs:
discrepancy across I o
several random ‘ W

distributions Bang \ s

‘ Jit I P
| N-r I s [=d Hal
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Intelligent Monte Carlo Integration

e Goal
— Exploit knowledge about integrand
— Intelligent placement of samples
e Algorithm
— Intelligent stratified sampling
— Importance sampling
— Welighted importance sampling
— Separation of the main part (Control Variates)
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Intelligent Monte Carlo Integration

+ Intelligent Stratified Sampling
— Goal: Low variance with few samples
— Suitable placement of strata

« Approach

— Choose strata such that variance is equally distributed
— Choose number of samples N,

N, o< (a;—a, ;) var,(f)
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Intelligent Monte Carlo Integration

- |Importance Sampling
— Goal: Distribute samples such as to minimize variance

fpx) jr o } p(x)dx

« Approach

— ——

sampling

7= fde =

— Choose p(x) such that
* pis a probability density
o f(x)/p(x) < oo

— ldeally: p(x) = |f(x)| but

p(x)=Cf(x)
| = j p(x)dx = Cj f(x)dx

— C= 1/] £(x)dx

— But any function p(x) that has a
shape similar to f(x) helps

p(x) p(x)
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Intelligent Monte Carlo Integration

« Combining multiple importance distributions
— ldea: One function p(x) is too inflexible
— Use multiple functions in parallel

Approach with two estimators and weights w; (Xw;=1)
VIwsS, +w,S, |= wiVI[S, |+ wiV[S, ]+ 2w w,Cov|S,. S, ]
Cov[S,.S,|=EI[S,-S,|-E|S,|E[S,] (zeroif independent)

o Y S, |+ Cov[s,.S, ]
w, V[S,]+Cov[S,.S,]
— Similar results for multiple estimators

A-priori weighted integration YA F(E)
— Weight two estimators [ = Z - Z

— Weights are determined analytically i N, i P;”(é:)
or are estimated (manually)
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Intelligent Monte Carlo Integration

- A-posteriori multiple importance sampling
— Choose samples
— Assign welghts according to probabilities of each estimator

N M
ZZ / ((’;)) with Z:] W=

m]:l

 Balance Heuristics
p;(x)
Z p;(x)

— No other combination can be much better [Veach 97]

— Motivation
« Samples with low probability boost the variance with 1/(p))
+ Assign larger weights to samples with higher probability

— Must be able to evaluate probability of sample according to other
estimate

w.(x) =
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Intelligent Monte Carlo Integration

- Example: Different Probabilities
— Sampling directions

.....

— Sampling the surface
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Intelligent Monte Carlo Integration

Other weighting heuristics
— Variance is additive — may have impact on already good estimators
— Try to sharpen the weighting

Cuto_ff and Power Heuristic

0 if p,<ap,.. p#
W. =
V., = 4 ); . 5
Wi Py otherwise DI
Z; . p.zap,.}

— Reduced weight for samples with low probability
Maximum Heuristic

{1 if p, is maximum
W, =
[

0 otherwise

— Adaptively partitions the integration domain according to p;(x)
— But too much samples are thrown away
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Intelligent Monte Carlo Integration

« Separation of the main part (Control Variates)

— Goal: Low variance through approximation with analytically
solvable function

« Approach
f ZJf(X)dx :Jg(x)dﬁj[f(x)—g(x)] dx

analytically lower variance than f(x)
solvable

— g(x) should be a good approximation to f(x)
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Direct Lighting Computation

* Need to compute the integral
Lix,w,)=L (x.0,6)+

cos@ cosb.
I f (. .x,0,)L(y~® )V(x,y) a Y JA

— llx=yl?
= L . — X—YV
2= usually low variance if mostly diffuse ypknown . - =

variance

y

g
high variance

« See also
— Shirley et al.: MC-Techniques for Direct Lighting Calculations

« Single light source, not too close (>1/5 of its radius)

— Small:
« 1/r2 has low variance
* cos6, has low variance

— Planar:
» cosb, has low variance too

— Choose samples uniformly on light source geometry
« Sampling directions has very high variance unless we have huge lights
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Direct Lighting Computation

 Importance sampling of many light sources
— Cost grows with number of lights

« Approaches
— Equal probability (1/NL)
— Fixed weights according to total power of light

) = (I).f
!‘ i Z (I)“-

o Sample as discrete probability density function
— Fixed spatial subdivision
» Estimate the contribution in each cell (e.g. octree)
— Dynamic and adaptive importance sampling
« Compute a running average of irradiance at nearby points
» Use the relative contribution as the importance function
» Should use coherent sampling
* Might need to estimate separately for primary and secondary
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Direct Lighting Computation

 Sampling thousands of lights interactively

— At each pixel send random path into the scene and
towards light
* Low overhead since we already trace many rays per pixel
— Gives a rough estimate of light contribution to the
entire image
« Take maximum contribution of each light at any pixel
« Might want to average over several images (less variance)

— Use this estimate for importance sampling

« Make sure every light is sampled eventually

* Might ignore lights with very low probability (but has bias)
— Trace samples ONLY from the eye

» Avoids touching the entire scene
* Minimizes working set for very large scenes
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