

REFLECTION & REFRACTION

SEMINAR 6

Computer Graphics 2

Reflection

Depends upon:

$$\boldsymbol{\omega}_{s} = 2(\boldsymbol{\omega} \cdot \boldsymbol{n})\boldsymbol{n} - \boldsymbol{\omega}$$

- Light polarization
- Light direction
- Surface normal

Refraction

$$\boldsymbol{\omega}_r = -\frac{\eta_1}{\eta_2} (\boldsymbol{\omega} - (\boldsymbol{\omega} \cdot \boldsymbol{n})\boldsymbol{n}) -$$

Depends upon:

- Light polarization
- Light direction
- Surface index of refraction
- Surface normal

Snell's Law

Describes relationship between angle of incidence and angle of refraction with respect to index of refraction of two surfaces

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\eta_2}{\eta_1}$$

Total Internal Reflection

- Light strikes surface with angle larger than a certain critical angle
- Wave cannot pass and is reflected instead of refracted
- Only occurs when going from a medium with higher refractive index to a medium with lower refracting index

Fresnel Equations

- 6
- Describe lights behavior when moving between media with different refractive indices
 - Part of the light is reflected
 Adds to 1 due to energy conservation
 Part of the light is refracted
- Complex formulas not suitable for real time rendering
- Usually approximated using Schlick's approximation

Schlick's Approximation

7

- Approximates Fresnel factor
- Formula calculates specular reflection coefficient

$$F(\theta) = F_0 + (1 - F_0)(1 - \cos \theta)^5$$

^{Where:} θ is the angle between view direction and half vector

$$F_0 = \left(\frac{\eta_1 - \eta_2}{\eta_1 + \eta_2}\right)^2$$

Then: ReflectiveFactor =
$$F(\theta)$$

RefractiveFactor = $1 - F(\theta)$

Schlick's Approximation - F_0 change

