
Position Based Dynamics

Matthias Müller, Bruno Heidelberger, Marcus Hennix, John Ratcliff
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Presentation by Daniel Adam

2010/2011

What can you expect?

� To be crushed if you don’t pay attention!

Overview

� Position based approach to simulation of dynamic systems

� The Content

� Motivation

� Algorithm

� Some of the math behind

� Constraint handling

� Usage - Cloth simulation

� Results

Introduction

� Simulation of physical phenomena such as the dynamics of rigid bodies, deformable

objects or fluid flow

� Computation science: Accuracy

� Physical-based animation: Stability, robustness, speed and visual plausibility

� Traditional methods - Force or impulse based

� Simple explicit methods: Inaccuracy, instability

� Implicit methods: Large, slow

� Proposed method – Position based

� Directly modify positions

Features and advantages

� Similiar approaches have been used before, but no complete framework has been

defined

Position based dynamics:

� gives control over explicit integration

� removes the typical instability problems

� allows direct manipulation of objects and its parts

� allows the handling of general constraints

Representation

� Object representation:

� dynamic object is represented with a set of N vertices
� vertex i∈ [1, ..., N] has a mass mi, a position xi and a velocity vi

� Constraint representation:

� a cardinality nj

� the constraint j is a function Cj(x): R3nj → R
� set of indices

� stiffness parameter (defines the strength of the constraint)

� equality constraint j is satisfied if: Cj (x) = 0

� inequality constraint j is satisfied if: Cj (x) ≥ 0

Algorithm

(1) forall vertices i

(2) initialize xi = xi
0, vi = vi

0, wi = 1/ mi

(3) endfor

(4) loop

(5) forall vertices i do vi = vi +∆twifext(xi)

(6) dampVelocities(v1, ... , vN)

(7) forall vertices i do pi = xi + ∆tvi

(8) forall vertices i do generateCollisionConstraints(xi → pi)

(9) loop solverIterations times

(10) projectConstraints(C1, ... , CM+Mcoll ;p1, ... ,pN)

(11) endloop

(12) forall vertices i

(13) vi = (pi - xi) / ∆t

(14) xi = pi

(15) endfor

(16) velocityUpdate(v1, ... , vN)

(17) endloop

Algorithm description

� Initialization:

� (1)-(3) initialize the state variables.

� Velocity manipulation:

� (5) allows to hook up external forces

� (6) damps the velocities if necessary

� (16) the velocities of colliding vertices are modified according to friction and restitution

coefficients

� Constraint manipulation:

� (8) generates the Mcoll collision constraints

� (10) projects all of the constraints

� Position based dynamics:

� (7) estimates pi of the vertices are computed using explicit Euler

� (9)-(11) manipulate these position estimates such that they satisfy the constraints

� (13-14) vertices are moved to the optimized estimates and the velocities are updated

accordingly

Solver

� Input:

� M +Mcoll constraints

� estimates p1, ... , pN

� The solver tries to modify the estimates such that they satisfy all the constraints. The

resulting system of equations is non-linear.

� Solution:

� iterative, similiar to the Gauss-Seidel method

� the idea is to solve each constraint independently one after the other

� repeatedly iterate through all the constraints and project the particles to valid locations

� order of constraints is important

Constraint projection

� moving the points such that they satisfy the constraint

� internal constraints must conserve both linear and angular momentum

� The Issue:

� let us have a constraint with cardinality n on the points p1, ... , pN with constraint function C

and stiffness k.

� let p be the concatenation [p1
T, ..., pN

T] T

� for internal constraints rotating or translating the points does not change the value of the

constraint function

� The Solution:

� if the correction ∆p is chosen to be along the gradient both momenta are

conserved

C(p)p∇

Constraint projection

� The Correction:

� given p we want to find a correction ∆p such that C(p+ ∆p) = 0 (≥ 0).

� approximation: C(p+ ∆p) ≈ C(p) +

� to solve the problem one needs to find a scalar λ (lagrange multiplier):

�

� solving for λ and substituting it into the formula yields the final formula for ∆p:

�

� The result is a non-linear equation, which can be solved iteratively for each point pi

alone

0 p . C(p) =∆∇ p

 C(p) p p∇=∆ λ

2|)(|

)(

pC

pC

p∇
−=λ

)(
|)(|

)(

2
pC

pC

pC
p p

p

∇
∇

−=∆

Constraint projection

� For the correction of an individual point pi we have:

� , where s is the scaling factor (same for all points)

�

� The methods described so far work if all the points have the same masses

),...,(1 Npi ppCsp
i

∇−=∆

∑ ∇
=

j

Np

N

ppC

ppC
s

j

2

1

1

|),...,(|

),...,(

Weighted projection

� If the points have individual masses then the corrections ∆p must be weighted by the

inverse masses wi = 1 / mi

� In this case a point with infinite mass, i.e. wi = 0, does not move for example as expected

� Adding the inverse mass to the formula:

�

�

�

 C(p) w p ii ip∇=∆ λ

∑ ∇
=

j

Npj

N

ppCw

ppC
s

j

2

1

1

|),...,(|

),...,(

),...,(1 Npii ppCwsp
i

∇−=∆

Constraint projection

� Type handling is straightforward:

� For equality constraint always perform a projection

� For inequality constraint perform a projection only when C(p) < 0

� Stiffness parameter k:

� simplest variant is to multiply the corrections ∆p by k ∈ [0, …, 1]

� for multiple iteration loops of the solver, the effect of k is non-linear

� better solution: multiply by where ns is the number of iterations

� resulting material stiffness is applied linearly, but it is still dependent on the time step of the

simulation.

sn/1
k)-(1-1

Distance constraint

� C(p1,p2) = |p1 - p2| - d = 0

� The gradients:

�

�

� The scaling factor s:

�

� Final formula:

�

|p - p|

)p - (p
)p ,C(p

21

21
21p1

=∇

|p - p|

)p - (p
-)p ,C(p

21

21
21p2

=∇

21

21

ww

d - |p-p|
 s

+
=

|p - p|

p - p
 d) -|p- p(|

 w w

w
 - p

21

21
21

21

1
1

+
=∆

Example – Distance Constraint

� Let us consider a 2D case of 3 vertexes A, B, C bound by 2 distance constraints.

� The parameters:

� Weights: mA = 10, mB = 5, mC = 2

� Inverse weights: wA = 1/10, wB = 1/5, wC = 1/2

� Constraints: C1(A, B) = | A – B | - 1, C2(A, C) = | A – C | - 1

� New predicted positions: pA = [1, 1], pB = [4, 2], pC = [2, 3]

� Stiffness = 1

Example

� Both constraints are violated:

� Constraint projection:

� Lets handle the constraints in order: C1, C2

� Formulas:

� 1st iteration:

� C1 :

�

� C2 :

1 10 || >=− BA 1 5 || >=− CA

|p - p|

p - p
 d) -|p- p(|

 w w

w
 - p

21

21
21

21

1
1

+
=∆

|p - p|

p - p
 d) -|p- p(|

 w w

w
 p

21

21
21

21

1
2

+
=∆

]23.0 ,68.0[
10

1]- [-3,
 1) -10(

3

1
 - pA ≅=∆

]46.0- ,37.1-[
10

1]- [-3,
 1) -10(

3

2
 pB ≅=∆

A = [1.68, 1.23], B = [2.63, 1.54]

| A - B | = 0,9986

]13.0 ,02.0[
8,1

1.77]- , [-0.32
 1) -(1.8

6

1
 - pA ≅=∆

1 1.8 || >≅− CA

]65.0- ,12.0-[
8,1

1.77]- , [-0.32
 1) -(1.8

6

5
 - pC ≅=∆

A = [1.7, 1.36], C = [1.88, 2.35]

| A - C | = 1,0125

Example

� New positions:

� A = [1.7, 1.36]

� B = [2.63, 1.54]

� C = [1.88, 2.35]

� The process is iteratively

repeated to get better results

Collision Detection

� Continuous collisions:

� for each vertex i the ray xi → pi is tested if it enters an object

� compute the entry point qc and the surface normal nc at this position

� add a new inequality constraint that ensures non-penetration to the list, such constraint has

function C(p) = (p - qc) . nc ≥ 0 and stiffness k = 1

� Static collisions:

� compute the surface point qs closest to the point pi and the surface normal nc at this position

� add add a new inequality constraint with C(p) = (p - qs) . ns ≥ 0 and stiffness k = 1

� To make the simulation faster, the collision constraint generation is done outside of

the solver loop.

Example – Plane Constraint

� Consider a case of a particle (single vertex) that has entered a wall (plane), however

the particle is elastic, so it shouldn’t penetrate the wall, but bounce off it.

� The parameters:

� Plane given by three points: A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1]

� Particle X position: pX = [0, 0, 0]

� Stiffness = 1

� Constraint:

� C(p) = (p - qs) . ns ≥ 0

� ns = normal vector = (1, 1, 1); normalized =

� qs = parallel projection of X to the plane = [1/3, 1/3, 1/3]

� Final form: C(pX) = (pX – [1/3, 1/3, 1/3]) . ≥ 0










3

1
,

3

1
,

3

1










3

1
,

3

1
,

3

1

Example

� Constraint projection:

�

� Our case with a single particle:

),...,(1 Npii ppCwsp
i

∇−=∆

)(
|)(|

)(
2 Xp

Xp

X
X pC

pC

pC
p

X

X

∇
∇

−=∆

∑ ∇
=

j

Npj

N

ppCw

ppC
s

j

2

1

1

|),...,(|

),...,(









=









∂

∂

∂

∂

∂

∂
=∇

3

1
,

3

1
 ,

3

1

z

)(
 ,

y

)(
 ,

)(
)(XXX

Xp

pCpC

x

pC
pC

X

)1(
3

1

3

1
,

3

1
 ,

3

1
.)1 ,1 ,1(

3

1
],,[)(−++=
















−= zyxzyxpC X

1|)(| 2 =∇ Xp pC
X

Example

� Solution:

� X = [0, 0, 0]

�

� New position: X =









=








−−=∆

3

1
,

3

1
 ,

3

1

3

1
,

3

1
 ,

3

1
).1(

3

1
Xp









−++−=∆

3

1
,

3

1
 ,

3

1
).1(

3

1
zyxpX










3

1
,

3

1
 ,

3

1

Collision Detection

� Friction and restitution can be handled by manipulating the velocities of colliding

vertices in step (16) of the algorithm

� The described collision handling is only correct for collisions with static objects,

because no impulse is transferred to the collision partners

� Multiple colliding objects:

� Correct response for multiple colliding objects can be achieved by simulating all objects

with the simulator

� the N vertices and M constraints which are the input to the algorithm simply represent two

or more independent objects.

Collision Detection

� Lets consider a case of two dynamic objects

� Let q be a point of the first object

� Let p1, p2, p3 be a triangle of the second object

� Example: Point q enters the triangle p1, p2, p3

� the algorithm inserts an inequality constraint with constraint function

C(q, p1, p2, p3) = ± (q - p1) . [(p2 – p2) x (p3 – p1)]

� this keeps the point q on the correct side of the triangle

Damping

� the velocities are dampened before they are used for the prediction of the new
positions

� local deviations from the global motion is dampened

� Proposed method:

(1) forall vertices i

(2) ∆vi = vcm + ω x ri - vi

(3) vi ← vi + kd∆vi

(4) endfor

� The variables:
� pcm = (Σi pi mi) / (Σi mi)

� vcm = (Σi vi mi) / (Σi mi) (velocity due to global body motion)

� ri = pcm – pi

� L = Σi ri x (mi vi)

� J = Σi (rx
i)(r

x
i)

T mi , where rx
i is the cross product matrix

� ω = J-1 L

Attachments

� Attaching vertices to static or kinematic objects

� How to model it:

� position of the vertex is simply set to the static target position

� alternatively update the position at every time step to coincide with the position of the

kinematic object

� To make sure other constraints containing this vertex do not move it, its inverse mass wi is

set to zero

Cloth Simulation

� the position based dynamics framework has been used to implement a real time cloth

simulator for games

� Representation of cloth:

� simulator accepts as input arbitrary triangle meshes

� the input mesh must represent a 2-manifold

� each node of the mesh becomes a simulated vertex

� user inputs cloth density and thickness, which are used to calculate the mass of each triangle

� the mass of a vertex is set to the sum of one third of the mass of each adjacent triangle

� constraints are defined along edges and faces

Constraints

� Stretching constraints:

� generated for each edge

� Cstretch(p1, p2) = |p1 – p2| - l0 = 0

� l0 is the initial length of the edge

� the stiffness parameter kstretch is set by the user

� Bending constraints:

� generated for each pair of adjacent triangles (p1, p3, p2) and (p1, p2, p4)

�

� φ0 is the initial dihedral angle between the two triangles

� the stiffness parameter kbend is set by the user

0

1412

1412

1312

1312
4321bend -)

|)p - (p x)p - (p|

)p - (p x)p - (p
.

|)p - (p x)p - (p|

)p - (p x)p - (p
acos()p,p ,p,(pC ϕ=

Cloth simulation

Collisions

� Collision with rigid bodies:

� to get two-way interactions an impulse mi∆pi / ∆t is applied at the contact point each time

the vertex i is projected due to collision

� Self-collisions:

� assume the triangles all have about the same size and use spatial hashing to find vertex

triangle collisions

� if a vertex q moves through a triangle p1, p2, p3, use the constraint function:

� C(q, p1, p2, p3) = ± (q - p1) . [(p2 – p2) x (p3 – p1)] – h (h is cloth thickness)

� testing continuous collisions is insufficient if cloth gets into a tangled state

� For closed triangle meshes, overpressure inside the mesh can easily be modeled

� The model:

� an equality constraint concerning all N vertices of the mesh

� compute the actual volume of the closed mesh and compare it against the original volume

V0 times the overpressure factor kpressure

�

� are the three indices of the vertices belonging to triangle i

Cloth Balloons

0

1

1
321

).(),...,(VkpppppC pressure

n

i
tttN

triangles

iii −









×= ∑

=

iii
ttt 321 ,,

Cloth Tearing

� Tearing is simulated by a simple process:

� When the stretching of an edge exceeds a threshold, select one of the adjacent vertices

� Put a split plane through that vertex perpendicular to the edge direction and split the vertex

� All triangles above the split plane are assigned to the original vertex

� All triangles below are assigned to the new vertex

� Method remains stable even in extreme situations

Conclusions

� Position based dynamics framework that can handle general constraints

formulated via constraint functions.

� With the position based approach it is possible to manipulate objects directly

during the simulation.

� It significantly simplifies the handling of collisions, attachment constraints

and explicit integration and it makes direct and immediate control of the

animated scene possible.

� The approach presented could quite easily be extended to handle rigid

objects as well

Eye Candy

Eye Candy

The End

Thank you for your attention.

