Position Based Dynamics

Matthias Miiller, Bruno Heidelberger, Marcus Hennix, John Ratcliff
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Presentation by Daniel Adam
2010/2011

[What can you expect’?

= To be crushed if you don’t pay attention!

Figure 1: A known deformation benchmark test, applied here to a cloth character under pressure.

Overview

Position based approach to simulation of dynamic systems

The Content

o Motivation

@ Algorithm

® Some of the math behind
@

Constraint handling

Usage - Cloth simulation

O Results

Introduction

= Simulation of physical phenomena such as the dynamics of rigid bodies, deformable
objects or fluid flow

O Computation science: Accuracy

= Physical-based animation: Stability, robustness, speed and visual plausibility

= Traditional methods - Force or impulse based
@ Simple explicit methods: Inaccuracy, instability
o Implicit methods: Large, slow

= Proposed method — Position based
@ Directly modify positions

Features and advantages

Similiar approaches have been used before, but no complete framework has been
defined

Position based dynamics:
gives control over explicit integration
removes the typical instability problems
allows direct manipulation of objects and its parts

allows the handling of general constraints

Representation

Object representation:

@ dynamic object is represented with a set of N vertices
o) vertex i€ [1, ..., N] has a mass m,, a position X, and a velocity v,

Constraint representation:
a cardinality n,
the constraint j is a function C;(x): R%i~ R
set of indices

o)
o
o
@ stiffness parameter (defines the strength of the constraint)
@ equality constraint j is satisfied if: C, (x) =0

o)

inequality constraint j is satisfied if: C; (x) >0

Algorithm

(1) forall vertices i

(2) initialize x,=x° v,=v. w.=1/m,

(3) endfor

(4) loop

(5) forall verticesido v, = v. +Arwf, (X.)

(6) dampVelocities(v,, ..., v,)

(7) forall vertices i do p, = X, + Atv,

(8) forall vertices i do generateCollisionConstraints(x, — p,)
(9) loop solverlterations times

(10) projectConstraints(C,, ..., CyypreonsPp -+ >Py)
(11) endloop

(12) forall vertices i

(13) v, =(p;-x)/ At

(14) X, = P;

(15) endfor

(16) velocityUpdate(v,, ..., v,)

(17) endloop

Algorithm description

Initialization:
o (1)-(3) initialize the state variables.

Velocity manipulation:

o (5) allows to hook up external forces

o (6) damps the velocities if necessary

o (16) the velocities of colliding vertices are modified according to friction and restitution
coefficients

Constraint manipulation:

o (8) generates the M_; collision constraints

@ (10) projects all of the constraints

Position based dynamics:

@ (7) estimates p, of the vertices are computed using explicit Euler

o (9)-(11) manipulate these position estimates such that they satisfy the constraints

@ (13-14) vertices are moved to the optimized estimates and the velocities are updated
accordingly

Solver

m Input:
o) M +M_, constraints

o estimates p,, ... , Py

= The solver tries to modify the estimates such that they satisfy all the constraints. The
resulting system of equations is non-linear.

= Solution:
o) terative, similiar to the Gauss-Seidel method
@ the idea is to solve each constraint independently one after the other
@ repeatedly iterate through all the constraints and project the particles to valid locations
@ order of constraints is important

Constraint projection

moving the points such that they satisfy the constraint

internal constraints must conserve both linear and angular momentum

The Issue:

@ let us have a constraint with cardinality n on the points p,, ... , py With constraint function C
and stiffness k.

@ let p be the concatenation [p,T, ..., py] T

for internal constraints rotating or translating the points does not change the value of the
constraint function

The Solution:

o if the correction Ap is chosen to be along the gradient V /C(p) both momenta are
conserved

Constraint projection

The Correction:

o given p we want to find a correction Ap such that C(p+ Ap) =0 (=>0).

o approximation: C(p+ Ap) = C(p) +VpC(p) Ap=0

@ to solve the problem one needs to find a scalar X (lagrange multiplier): Ap = AV pC(P)

_)
IV C(p)P
@ solving for A and substituting it into the formula yields the final formula for Ap:
C(p)
“Tiv.epe P
,C(p)

The result is a non-linear equation, which can be solved iteratively for each point p;
alone

Constraint projection

For the correction of an individual point p; we have:

— , wh is th ling fact for all point
Api — Svp,.C(Pp---’PN) where s is the scaling factor (same for all points)

o= C(pys--s Py)
) V, C(pos P
J

The methods described so far work if all the points have the same masses

Weighted projection

If the points have individual masses then the corrections Ap must be weighted by the
inverse masses w; = 1 / m,

In this case a point with infinite mass, i.e. w, = 0, does not move for example as expected

Adding the inverse mass to the formula:

Ap, =4 w,;V C(p)

o C(pys--s Py)
D w1V, C(pos P

J

Ap; ==sw,V , C(p)se.s Py)

Constraint projection

Type handling is straightforward:
o For equality constraint always perform a projection

o For inequality constraint perform a projection only when C(p) <0

Stiffness parameter k:

@ simplest variant is to multiply the corrections Ap by k €10, ..., 1]

@ for multiple iteration loops of the solver, the effect of k is non-linear

: : 1/ng : : :
@ better solution: multiply by 1- (1 - k) where n_ is the number of iterations

resulting material stiffness is applied linearly, but it is still dependent on the time step of the
simulation.

Distance constraint

&pf,
ﬂ]fl ; mn,
Cp1:pp) =1Ip; -pol-d=0 /
) m,
The gradients: p';
o VvV C(pl, pz) = Lpz) Figure 2: Projection of the constraint C(p1,p2) = |p1 —
b | P, -P» | P2\ —d. The corrections Ap; are weighted according to the
() inverse masses wi = 1/m;.
Pi - P>
\% C(pp pz) = -
O P2 | _ I
P
The scaling factor s:
g = Ip,-p,!-d
W, +W,
Final formula:
w P -P
— 1 1 2
o Apy=-——(Ip, -p, I-d) 2P

W, +w, Ip,-p, |

Example — Distance Constraint

Let us consider a 2D case of 3 vertexes A, B, C bound by 2 distance constraints.
The parameters:

o Weights: m, =10, mg =5, m.=2

Inverse weights: w, = 1/10, wg = 1/5, w = 1/2

Constraints: C,(A,B)=1A-B|-1,C,(A,C)=1A-CI-1

New predicted positions: p, = [1, 1], pg = [4, 2], pc = [2, 3]

Stiffness = 1

O O O O

3L r

25

Example

Both constraints are violated: [1A-BlI=410>1 lA—Cl=+/5>1

Constraint projection:
o Lets handle the constraints in order: C,, C,

O Formulas:

Ap, =-

(Ipl—pzl—d)& Ap, = (Ipl—pzl—d)&
W, +Ww, Ip,-p, | W, +Ww, Ip,-p, |

18t iteration

5 C =-—(J_ H! J_ I-10.68.0.23] A =[1.68,1.23], B =[2.63, 1.54]
3.- |A-BI1=0,9986
Ap, =—10-1 : E -1.37,-0.46
i Ps 3<J_) JE []
o C.: 1A-Cl=1.8>1
Ap, 2—8(1.8—1) 1:8 =[0.02,0.13] A -Cl=1,0125

Ap, =.%(1.8- 1) [_0'321’5;1'77] =[-0.12,-0.65]

9

Example

New positions:
A=11.7,1.36]
B =[2.63, 1.54]
C =[1.88, 2.35]

The process is iteratively

repeated to get better results

s r

25 r

+ %

Collision Detection

Continuous collisions:
@ for each vertex i the ray x; — p; is tested if it enters an object
@ compute the entry point q, and the surface normal n, at this position

@ add a new inequality constraint that ensures non-penetration to the list, such constraint has
function C(p) = (p - q.) . n. = 0 and stiffness k =1

Static collisions:
@ compute the surface point g closest to the point p, and the surface normal n_ at this position
@ add add a new inequality constraint with C(p) = (p - q,) . n = 0 and stiffness k =1

To make the simulation faster, the collision constraint generation is done outside of
the solver loop.

Example — Plane Constraint

Consider a case of a particle (single vertex) that has entered a wall (plane), however
the particle is elastic, so it shouldn’t penetrate the wall, but bounce off it.

The parameters:

o) Plane given by three points: A =[1, 0, 0], B=[0, 1, 0], C=[0, 0, 1]
@ Particle X position: py = [0, 0, 0]

® Stiffness = 1

Constraint:
o Cp)=(@-9q).n,20 11
o) n = normal vector = (1, 1, 1); normalized = (ﬁﬁﬁj

q, = parallel projection of X to the plane = [1/3, 1/3, 1/3]

1

o Final form: C(py) = (py — [1/3, 1/3, 1/3]) . [\15\15\@} >0

Example

Constraint projection:

C(ps.» Py)

Ap; ==sw,V , C(ps..s Py) s = 5
Zw IV, C(pyss Py

Our case with a single particle:

_ C(px)
1 1 1 1
C(pX):([X’y,Z]_g(l’l’l)j{[,[,ﬁj \/’ x+y+Z_1)
dC(py) aC(px) aC(px 1 1
V C 9 L) 9 9
e P = (ox j (ﬁ B ﬁj

IV, C(py)PP=1

Example

A :—i(x+ +z—1)(! 1)
SRR R g OV RV

Solution:
X = [0, 0, 0]

Ne t X — 9 9

Collision Detection

Friction and restitution can be handled by manipulating the velocities of colliding
vertices in step (16) of the algorithm

The described collision handling is only correct for collisions with static objects,
because no impulse is transferred to the collision partners

Multiple colliding objects:

@ Correct response for multiple colliding objects can be achieved by simulating all objects
with the simulator

@ the N vertices and M constraints which are the input to the algorithm simply represent two
or more independent objects.

Collision Detection

= Lets consider a case of two dynamic objects
@ Let q be a point of the first object
@ Let p,, p,, P; be a triangle of the second object

= Example: Point q enters the triangle py, Py, P3

@ the algorithm inserts an inequality constraint with constraint function
C(qs P Py Ps) =% (q - pl) . [(pz - pz) X (p3 - p])]
@ this keeps the point q on the correct side of the triangle

Figure 5: Constraint function C(q,pi,p2.p3) = (q—p1) -
n — h makes sure that q stays above the triangle p1,p2.p3
by the the cloth thickness h.

Damping

= the velocities are dampened before they are used for the prediction of the new
positions

= local deviations from the global motion is dampened

= Proposed method:

(1) forall vertices i

(2) Avi=v +0XT1;-V,
(3) v v+ kA,

(4) endfor

n The variables:

Pem = (& pymy) / (% my)

Vem = (21 \A mi) / (21 mi) (velocity due to global body motion)

I;i =Pem ~ Pi

L=%rx(myv;)

J =2 ()(@*) T m,, where r*, is the cross product matrix
o=J'L

© O O 0O O O

Attachments

= Attaching vertices to static or kinematic objects

m How to model it:

o position of the vertex is simply set to the static target position

o alternatively update the position at every time step to coincide with the position of the
kinematic object

o To make sure other constraints containing this vertex do not move it, its inverse mass w, is
set to zero

F

Figure 8: Cloth stripes are antached via one way interaction

to static rigid bodies at the top and via two way constraints
to rigid bodies at the bottom.

Cloth Simulation

the position based dynamics framework has been used to implement a real time cloth
simulator for games

Representation of cloth:
simulator accepts as input arbitrary triangle meshes
the input mesh must represent a 2-manifold

each node of the mesh becomes a simulated vertex

®
@
@
@ user inputs cloth density and thickness, which are used to calculate the mass of each triangle
@ the mass of a vertex is set to the sum of one third of the mass of each adjacent triangle

®

constraints are defined along edges and faces

Constraints

Stretching constraints:

® generated for each edge

© Ciretc(Po P) =1p, = p,l-1,=0
o 1, is the initial length of the edge
e

the stiffness parameter kK .., 1S set by the user

Bending constraints:
o generated for each pair of adjacent triangles (p,, p;, P,) and (p,, P,, P,)

(P, -P)X(Ps-P) (P, -P)X(Ps-Py)
[(p, -p) x (P -p) ! 1P, -p) x (P -Py)]

@ ¢, 1s the initial dihedral angle between the two triangles

@) Cbend (plapza p39p4) = aCOS() - (00

o the stiffness parameter Kk, , 1s set by the user

Cloth simulation

Figure 3: With the bending term we propose, bending and stretching are independent parameters. The top row shows

(Kstretching: kbending) = (1,1), (3.1) and (13, 1)- The bottom row shows (Kstretching: kbending) = (1,0), (1,0) and (1{5,0)-

Collisions

= Collision with rigid bodies:

o to get two-way interactions an impulse m,Ap, / At is applied at the contact point each time
the vertex 1 is projected due to collision

m Self-collisions:

o assume the triangles all have about the same size and use spatial hashing to find vertex
triangle collisions

o if a vertex q moves through a triangle Py, P,, P3, use the constraint function:

u C(q’ P Py P3) == (q - p]) . [(pz - pz) X (p3 - p])] —h (h is cloth thickness)
o testing continuous collisions is insufficient if cloth gets into a tangled state

Figure 6: This folded configuration demonstrates stable self
collision and response.

Cloth Balloons

= For closed triangle meshes, overpressure inside the mesh can easily be modeled

Figure 7: Simulation of overpressure inside a character.

n The model:

o an equality constraint concerning all N vertices of the mesh

o compute the actual volume of the closed mesh and compare it against the original volume

V, times the overpressure factor kpressure

ntriangles

© C(pl"“’pN): Z(ptllxpté)pté _kpressureVO

i=1

o tli , t;, t; are the three indices of the vertices belonging to triangle i

Cloth Tearing

m Tearing is simulated by a simple process:

O

o O O O

When the stretching of an edge exceeds a threshold, select one of the adjacent vertices

Put a split plane through that vertex perpendicular to the edge direction and split the vertex
All triangles above the split plane are assigned to the original vertex

All triangles below are assigned to the new vertex

Method remains stable even in extreme situations

Figure 10: A piece of cloth is torn open by an attached cube and ripped apart by a thrown ball.

Conclusions

m Position based dynamics framework that can handle general constraints
formulated via constraint functions.

= With the position based approach it is possible to manipulate objects directly
during the simulation.

m [t significantly simplifies the handling of collisions, attachment constraints
and explicit integration and it makes direct and immediate control of the
animated scene possible.

m The approach presented could quite easily be extended to handle rigid
objects as well

Eye Candy

Ficure 9: Influenced bv collision. self collision and friction. a piece of cloth tumbles in a rotatine barrel.

T

Figure 11: Three inflated characters experience multiple collisions and self collisions.

Eye Candy

Figure 12: Extensive interaction between pieces of cloth and an animated game character (left), a geometrically complex game
level (middle) and hundreds of simulated plant leaves (right).

The End

Thank you for your attention.

