Z-buffer

Computer Graphics 1

Algorithm Overview

Example Depth Map

Sphere Shading

2D Circle Example

$$x^{2} + z^{2} = r_{C}^{2}$$

$$z^{2} = r^{2} - x^{2}$$

$$z = \sqrt{r_{C}^{2} - x^{2}}$$

Sphere in Cylindrical Coordinates

Height Calculation Revisited

Sphere radius: $r_{\rm S}$

$$z$$
 calculation in circle case: $z = \sqrt{r_C^2 - \chi^2}$

We want to calculate z which equals to z in cylindrical coordinates:

z depends only on r in cylindrical coordinates (θ can be ignored)

$$z = \sqrt{r_S^2 - r^2}$$

Calculation of r in cylindrical coordinates from Cartesian coordinates:

$$r = \sqrt{x^2 + y^2}$$

Thus:
$$z = \sqrt{r_S^2 - x^2 - y^2}$$