
Chapter 9: Surface Reality
Techniques
Modeling and rendering of every 3-D detail of a surface is very tedious and in many
applications inefficient solution. A common method for adding surface detail is to map
texture patterns onto the surfaces of objects. A solid space allows the generalization of
traditional solid texturing in 1-D, 2-D or 3-D domains. The solid space can be
represented either by an array or by a mathematical function. Such solid spaces are
either mapped onto a surface of an object in 3-D or directly projected into a screen
space by using the volume rendering visualization techniques.

9.1 Mathematical Description of Solid Spaces
Solid spaces are three-dimensional spaces associated with an object that allow for
control of an attribute of the object. The solid space framework encompasses traditional
solid texturing, hypertextures, and volume density functions within a unified framework.
Solid texturing applied to the object, is as if the defining space is being carved away
similar to carving the object made from wood and marble. Solid-space examples include
also the geometry defined by volume density functions (as is discussed in Chapter 11),
roughness, bump mapping, reflectivity, transparency, illumination characteristics, and
shadowing of objects.

Definition 9.1: Solid space is a function mapping the m dimensional unit cube (m=2, or
3) into the n-dimensional space, S: D⊂ (0,1)m→H⊂ Rn. The two- or three-dimensional
solid space is defined as follows
 S(s,t) = F, F∈ Rn, n = 1, 2, 3, …
 S(r,s,t) = F, F∈ Rn, n = 1, 2, 3, …

With no loss of generality, we scaled the solid space coordinates r, s, and t to vary over
the interval (0,1). The definition of solid space can change over time and then the time
could be considered to be an additional dimension to the solid space function, S(r,s,t,T).
The solid space, S is usually a continuous function throughout definition space D, but it
is not a necessarily requirement. Note that the choice of F determines the frequencies in
the resulting solid spaces, and, therefore, the amount of aliasing artifacts that may
appear in a final image.

9.2 The Mappings
The mapping algorithms can be thought of as modifying the shading algorithm by using
the solid space to alter surface parameters, such as material properties and normals.
There are three major approaches:

1. Texture mapping uses a pattern or texture to determine the color of a pixel
giving detail by painting patterns onto smooth surfaces.

2. Bump mapping distorts the shape of the surface to create variations, such as
the bumps or waves on water surface.

3. Environmental mapping allows us to create images that have the appearance
of ray-traced images without having to trace reflected rays. As a result, the
environment is painted onto the surface as that surface is being rendered.

All the methods rely on the texture being stored as a discretized two- or three-
dimensional solid space.

9.3 Two-Dimensional Texture Mapping
Let us start with a two-dimensional texture pattern defined by a solid space S(s,t), where
variable s, and t are known as texture coordinates. We can thing of S as continuous,
although, in discrete form it occupies the memory as an n × m array of texture elements
called texels.
A texture mapping, M: (s,t)→(xs,ys) associates a unique point of solid space , S with
each point on a geometric object that is itself mapped to screen coordinates (xs,ys) for
display. Let the object be represented in spatial object coordinates (x,y,z) we can
represent a texture map M as composition of a mathematical function that maps from
texture coordinates to geometric coordinates, MT: (s,t)→(x,y,z), and a projection
function that maps from geometric coordinates to screen coordinates, MVP: (x,y,z)→
(xs,ys). Formally, we can write that
 M = MVP⋅MT.
Function MT is usually used to map the rectangular area to an arbitrary region in three-
dimensional space. It may be a complicated function, or may have undesirable
properties, like distortion of shapes at distances.
If the geometric object is defined by using parametric surfaces, F: (u,v) →(x,y,z) we
should use the two concurrent mappings, the first from texture coordinates to parametric
coordinates, MP: (s,t)→(u,v), and the second from parametric coordinates to geometric
coordinates, F, as shown in Figure 9.1. Formally, we can write that
 MT = F⋅MP.

u

v

t y

x

z

MP

MVP

F

xs

ys

MT

s

Figure 9.1. Mapping compositions used in texture mapping.

9.3.1 Forward Texture Mapping Algorithm
The forward mapping uses the map, M, from texture coordinates to screen coordinates.
The screen space defined by screen coordinates is dicretized as an ns × ms array of
image elements called pixels. A small rectangular area of the texture pattern S(s,t), maps
to the curved area in the screen space. The texture values S(s,t), can then be used to
either modify the color or assign a color to the pixels covered by the projected curved
area in the screen space. A disadvantage of this mapping is that a selected rectangular

area in texture coordinates does not match up with the pixel boundaries in the discrete
screen space, thus requiring calculation of the fractional area of pixel coverage.

9.3.2 Backward Texture Mapping Algorithm
The inverse mapping from screen coordinates to texture coordinates is the most
commonly used texture-mapping method. The method avoids pixel subdivision
calculation and allows antialising (filtering) procedures to be easily applied. However,
the backward method requires calculation of the inverse viewing-projection
transformation MVP

-1 and the inverse texture-map transformation MT
-1. We are

determining the color of a squared pixel centered at screen coordinates (xs,ys) from a
corresponding curved area in texture coordinates.
One simple method is to use the point (s,t) obtained by inverse projection of the pixel
center to find a texture value S(s,t). Although, a simple method, it is subject to serious
aliasing problem particularly if the texture is periodic, as shown in Figure 9.2.
Neglecting the finite size of a pixel can lead to moiré patterns in the screen space. A
better approach is to assign a texture value based on averaging of the values in the
curved area in texture coordinates.

y

x

z

xs

ys
pixel

MVP
-1

t

s

MT
-1

M-1

Figure 9.2. Aliasing in texture mapping.

Examples 9.1: Invertible MP maps.
1. Given a parametric surface, we can often map a point in the texture S(s,t) to a point
on the surface p(u,v) by a linear map of the form
 u = as + bt + c,
 v = ds + et +f.
Providing that ae ≠ bd this linear map is invertible.

2. Linear mapping can also trivially map the texture to a parametric patch. When a
parametric patch corners (umin, vmin) and (umax, vmax) corners correspond to the texture
corners (smin, tmin) and (smax, tmax), as shown in Figure 9.3, we can write the mapping

()

().

,

minmax
minmax

min
min

minmax
minmax

min
min

vv
tt

tt
vv

uu
ss

ss
uu

−
−

−
+=

−
−

−+=

The linear mapping is easy to implement but it does not take into account the curvature
of the surface and therefore texture patches are stretched.

u

vt

s

MP

(umax, vmax)

(umin, vmin)

(smax, tmax)

(smin, tmin)

Figure 9.3. Linear mapping.

Examples 9.2: Texture mapping.
Suppose that the texture coordinates vary over the unit square, we consider the transfer
of the pattern to a cylindrical surface of height h and radius r. Points on the quarter of
the cylinder are given by the parametric equations F: (u,v) →(x,y,z),
 x = r cos(u), y = r sin(u), z = v/h, 0 ≤ θ ≤ π/2.
We cam map the pattern to the surface with the following linear transformation MP:
(s,t)→(u,v),
 u = sπ/2, v = t.
Next, when we perform the inverse viewing transformation from screen coordinates to
the object coordinates. Object coordinates are then mapped to the surface parameters
with the inverse transformation, F-1,
 u = tan-1(y/x), v = z*h,
and to the texture space with, MP

-1,
 s = 2u/π, t = v.

9.4 Two-Part Texture Mapping
The two-part mapping uses the intermediate surface, such as a sphere, cylinder, or cube
for texture mapping of complicated object surfaces. In the first step, the texture is
mapped to the intermediate shape. In the second step, the intermediate surface
containing the texture is mapped to the object surface being rendered. There are three
possible strategies to perform the second step. First method takes the value of a texture
and goes in the direction of the intermediate surface normal until the object is
intersected, and he color o f the intersection point is the color of the texture. The second
method uses the inverse approach, starting at the object surface and going in the object
surface normal direction until we interest the intermediate object, where we read the
texture value. The third possibility is to draw the lines from the center of the object and
find both the intersection with object and intermediate surface. The texture at the point
of intersection with the intermediate surface is assigned to the intersection point on the
object as shown in Figure 9.4.

n

n

n
n

n

n

 a) b) c)
Figure 9.4. Two-part mapping. (a) Going in the direction of intermediate surface normal.

(b) Going in the normal of he object surface. (c) Going in the direction of central line.

9.5 OpenGL Texture Mapping
The OpenGL contains the functionality o map one- and two-dimensional textures to
one- through four-dimensional graphical objects. The texture mapping is done, as
primitives are rasterized by mapping three-dimensional points to locations on the
display. Each fragment of the object is tested for visibility and is shaded if visible.
Suppose that we have a 512×512 my_texels representing our discretized solid space

glubyte my_texels[512][512];
We specify that this array is to be used as a two-dimensional texture
 glTexImage2D(GL_TEXTURE_2D, level, components, width, height, border,
format, type, my_texels);
The format of image having three color components R, G, B is described by GL_RGB,
the type is GL_UNISIGNED_BYTE, and the value components is equal to 3 for RGB
components. To enable he texture mapping we use
 glEnable(GL_TEXTURE_2D);
 Other part of setting up a texture mapping is to specify the mapping of the texture onto
a geometric object. We can do this by assigning the correspondence between corner
texture coordinate and the object coordinate of a quadrilateral by the following code
 glBegin(GL_QUAD)
 glTexCoord2f(0.0,0.0); /* Assign the texture coordinate (0,0) */
 glVertex2f(x1, y1, z1); /* to (x1, y1, z1) object coordinates. */
 glTexCoord2f(1.0,0.0);
 glVertex2f(x2, y2, z2);

 glTexCoord2f(1.0,1.0);
 glVertex2f(x3, y3, z3);

 glTexCoord2f(0.0,1.0);
 glVertex2f(x4, y4, z4);
 glEnd();
We also could set new normal or colors before we specify each vertex. When projecting
the pixel to the texture coordinates, it can be smaller or larger than one texel. To avoid
this problem of aliasing the OpenGL uses a 2 × 2 average on the four closest texels if
we specify
 glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LIN
EAR);
 glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LIN
EAR);
A better technique but more memory consuming is called mipmapping. We do not need
the resolution of the original texel array, for objects that project to an area of screen

space that is smaller compared with the size of the texel array. In OpenGL we can
generate texture array at reduced sizes automatically. For example a 64 × 64 texture
array, can be reduced to series of arrays with sizes 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2,
and 1 × 1 by a function
 gluBuild2Dmipmaps(GL_TEXTURE_2D,3,64,64,GL_RGB,GL_UNSIGNED_
BYTE,my_texels);
The mipmaps are put in use automatically if we specify

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEA
REST_MIPMAP_NEAREST);
Advance texture features provide the possibility to map surface textures directly onto a
three-dimensional mesh. OpenGL can also provide a spherical mapping, as we
discussed in the Section for two-part texture mapping.

9.6 Environment Mapping
High reflective surfaces are characterized by specular reflections that mirror the
environment. For example, a shiny ball in the center of a room reflects all the walls of
the room. We can extent the texture mapping techniques to project the reflected
environment onto the object surface. The idea is similar to two-part texture mapping. At
first, we obtain an image of the environment on an intermediate projection surface;
usually a box is used for environments such as a room. The environmental image is
obtained by putting the center of projection at the center of the reflective object. An
example of environmental image of a room projected on the box is shown in Figure 9.5.
Similar to two-part texture mapping, the texture value at a point on the object is
obtained from the corresponding point on the intermediate surface calculated from the
reflection vector, r and location of the viewer (view direction v), Figure 9.5.

n

r

v

Left Right

Front

Back

Floor Ceiling

Texel value

a) b)
Figure 9.5. Environmental mapping with a box. a) Image of the environment. b)

Environmental mapping from the intermediate surface

In OpenGL we invoke this algorithm by the lines
 glTexGenfv(GL_S, GL_SPHERE_MAP, 0);
 glTexGenfv(GL_T, GL_SPHERE_MAP, 0);
 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_GEN_T);

9.7 Bump Mapping
The real strawberry is characterized primarily by small variations in its surface, rather
than by variations in its color. The bump mapping technique generates small variations
of the surface by perturbing the normal vectors as the surface is rendered; the highlights
and colors than give the impression of surface variations. This method is based on the
idea that the surface shape at a point is characterized by the normal at this point and
small neighborhood. Small perturbation to the normal vectors applied on a smooth
surface gives the appearance of a complex surface.
Let P(u,v) = (x(u,v),y(u,v),z(u,v)) be appoint on a parametric surface, the unit normal
vector at that point is derived from a cross product

,
vu

vu

PP
PP

n
×
×

=

where 






∂
∂

∂
∂

∂
∂=

u

z

u

y

u

x
u ,,P , and Pv are the partial derivatives of P with respect to

parameters u and v. Suppose we displace the surface in he normal direction by a
function called the bump function, d(u,v):

P’=P+d(u,v)n.
We prefer to use only the normal of perturbed surface in shading calculations obtained
as
 n` = Pv` × Pv`.
Where the perturbed partial derivatives are obtained as

.),(

,),(

vvv

uuu

vud
v

d

vud
u

d

nnpp

nnpp

+
∂
∂+=′

+
∂
∂+=′

Assuming the d(u,v) is small, we can neglect the last term of both equations.
Substituting the equation into the above cross product and noting that n × n = 0 we
obtain the perturbed normal

.uv v

d

u

d
pnpnnn ×

∂
∂+×

∂
∂+=′

The final step is to normalize n’ for use in the shading model.

9.8 Blending and Compositing Techniques
The mechanism called alpha (α) blending can among other effects, create images with
transparent objects. The alpha channel is the fourth color in RGBA (or RGBα) color
mode that controls how the RGB values are written into the frame buffer. In the solid
space terminology we write S(s,t) = F = (RGBA), F∈ R4.
The opacity of a surface is a measure of how much light penetrates through that surface.
An opacity (α) equal to 1 corresponds to a completely opaque surface that blocks all
light, while an opacity of 0 is completely transparent surface. Having several polygons
with defined alpha channel, the combination of their color is similar to joining two
pieces of colored glass into a single piece of glass that has higher opacity and a color
different from either of the original pieces.
Let us have two texels represented with four elements (RGBα) s = [sr, sg, sb, sa], d = [dr,
dg, db, da], then a blending operation replaces d with
 d’ = [bsr + cdr, bsg + cdg, bsb + cdb, bsa + cda].
The constants b and c are the source and destination blending factors. As it can occur
after blending the colors, a value of α>1 is limited (clamped) to the maximum of 1.0,
and α<0 is clamped to 0.0.

Usually, we wish to keep our RGB colors between 0 and 1 in the final image, without
having to clamp those values greater than 1. Suppose, we have n images that should
contribute equally to the final display. We can either scale the values of each texel, or
use the source and destination blending factors by 1/n.
 In OpenGL we enable blending by
 glEnable(GL_BLEND);
The desired source and destination factors can be set up by
 glBlendFunc(source_factor, destination_factor);
Many applications use the source factor α and the destination factor 1-α. The resulting
color in OpenGL is

() () ()
() ()).1,1

,1,1(,,,

 dsssdsss

dsssdsssdddd

BB

GGRRBGR

αααααα
ααααα

−+−+
−+−+=′′′′

This formula ensures that both transparent and opaque polygons are handled correctly
and that neither colors nor opacities can saturate. The major difficulty with this blending
technique is that the order in which we render the polygons affects the image. To get a
desired effect, we must now control this order within the application.

9.9 Fog
We can create the illusion of depth by drawing textures father from the viewer dimmer
than textures closer to the viewer, a technique known as depth cueing. A simple
implementation uses the α blending technique.
A fog creates the illusion of partially translucent space between the object and the
viewer, by blending each texture fragment in a distance dependent manner. If the texel
has a value Cs and the color of fog is Cf, then the final color of pixel in screen
coordinates is

() .1 fss ff CCC −+=′

The depth-cueing effect is obtained if f varies linearly depending on the distance from
eye position. Fog density function is the exponential function of distance, z, from eye
position

.
25.0 zef −=

OpenGL supports the fog densities in RGBA mode by using the function calls
 GLfloat fcolor[4] = { …}
 glEnable(GL_FOG);
 glFogf(GL_FOG_MODE, GL_EXP);
 glFogf(GL_FOG_DENSITY, 0.5);
 glFogfv(GL_FOG_COLOR, fcolor);

9.10 Volumetric Rendering of Solid Spaces
Let us focus now on the three-dimensional solid space S(r,s,t). We can thing of S as
continuous, although, in discrete form it occupies the memory as an n × m × l array of
elements called voxels. Function S can be defined by procedural methods or by using
the three-dimensional volume density functions that define the density of a continuous
three-dimensional space. The volumetric density function is the natural extension of
solid texturing to describe the actual geometry of objects. They are extensively used in
computer graphics for modeling and animating gases, fire, fur, liquids, and other soft
objects.
For true three-dimensional images and solid spaces, volume rendering must be
performed. Volume rendering is a mapping, M: (r,s,t)→(xs,ys) which associates a unique
point of solid space, S with each point on a screen coordinates (xs,ys) for display. We
will discuss the method, which is described in detail in Ebert and Parent 1990. The ray

from eye through the pixel (xs,ys) is traced through the defining solid space. For each
increment (voxel) along the ray through the volume sections, the solid space function is
evaluated. The color, density, opacity, shadowing, and illumination of each sample are
then accumulated based on illumination model for gases and atmospheric attenuation.

9.10.1 Algorithm: Volume Rendering
for each section of volume
 for each increment (voxel) along the ray
 get color, density, opacity of this voxel
 if (self shadowing)
 retrieve the shadowing of this element from the solid shadow table
 color = calculate the illumination of the volume using the

 opacity, density, and the appropriate model
 final_color = final_color + color;
 sum_density = sum_density + density;
 if (transparency < 0.01)
 stop tracing
 increment sample point (voxel)
create a buffer fragment

9.10.2 Illuminating of Gaseous Phenomena
The opacity is the density obtained from evaluating the volume density function
ρ(x(u),y(u),z(u)) multiplied by the step size ∆u along the ray approximated as

() () ()() 




 ∑ ∆⋅⋅−−=

far

near

u

u
uuzuyuxopacity ,,exp1 ρτ ,

where τ is the optical depth of material, unear is the entering point of the ray to the
volume, ufar is the ending point. The density function is defined in the solid space,
ρ(x(u),y(u),z(u)) = S(r,s,t).
The intensity of a pixel (xs,ys) in screen coordinates is calculated by the following
illumination model

() () ()() () () ()()

() () ()() ()∑

∑
×=

∆⋅⋅×




 ∑ ′∆⋅′′′⋅−=

i
i

u

u

u

u

phaseuzuyuxII

uuzuyuxIuuzuyuxB
far

near near

.,,

,,,,,exp

θ

ρρτ

Ii(x(u),y(u),z(u)) is the amount of light from light source i reflected from voxel (x,y,z),
phase(θ) is the phase function characterizing the total brightness of a voxel as a function
between the light and the eye. Self-shadowing of the gas is incorporated into I by
attenuating the brightness of each light source.

unear

ufar

voxel

ray

Figure 9.6. Volume rendering of solid spaces.

9.11 Geometry of Gases
After some background material has been discussed, this section will describe detailed
procedures for modeling gases. The geometry of gases is modeled using turbulent-flow-
based volume density functions. For each location in the solid space, we generate the
noise and apply the turbulence function. The noise implementation uses trilinear
interpolation of random numbers stored at the lattice points of regular grid to calculate
the noise for any point.
The turbulence() function given below is the standard turbulence function:

float turbulence(pnt, pixel_size)
 xyz pnt;
 float pixel_size;
{
 float t, scale;
 t=0;
 for(scale=1.0; scale > pixel_size; scale/=2.0)
 {
 pnt.x /= scale; pnt.y /= scale; pnt.z /= scale;
 t += calc_noise(pnt) * scale;
 }
 return(t);
}

Several basic mathematical functions are used to shape the geometry of the gas. The
simplest shape function is the power function

,)*(2
1

pptdensity =

where t is turbulated point of the solid space, and p1, p2 are parameters. In the following
example of a code, we demonstrate a simple gas procedure:

basic_gas(pnt, density, parms)
 xyz pnt;
 float *density, *parms;
{
 turb = turbulance(pnt, pixel_size);
 density = pow(turb*parms[1], parms[2]);
}

This procedure takes as input the location of the point being rendered in the solid space,
pnt, and a parameter array. The returned value is the density of the gas. Parms[1] is the
maximum gas density within the range (0.0, 1.0), and Parms[2] is the exponent for the
power function.

9.12 Smoke in OpenGL
One easy technique involves capturing a two-dimensional cross section or image of a
puff of smoke with both luminance and alpha channels for the image. The image can
then be texture mapped onto a quadrilateral and blended into the scene. The color and
alpha value of the quadrilateral can be used to control the color and transparency of the
smoke in order to simulate different types of smoke. The size, position, orientation, and
opacity of the quadrilateral can be varied as a function of time to simulate the puff of
smoke enlarging, drifting and dissipating over time as shown in Figure 9.7.

alpha 1.0
alpha 0.85

alpha 0.75

scale x2 scale x2

Figure 9.7. Scaling the image of a smoke.

9.13 Vapor trails emanating from a jet or a missile
A texture image consisting only of alpha values is used to modulate the alpha values of
a white billboard polygon. The trajectory of the airborne object is painted using multiple
overlapping copies of the billboard as shown in Figure 9.8. Over time, the individual
billboards gradually enlarge and fade. The program for rendering a trail requires
maintaining an active list of the position, orientation and time since creation for each
billboard used to paint the trail.

Fade

Head

Scale

Figure 9.8. Vapor trails.

Exercises
9.1 Write a program to implement texture mapping for the spherical surfaces and for
polyhedrons.
9.2 Given a spherical surface, write a bump mapping procedure to generate the bumpy
surface of an strawberry.
9.3 Write a bump-mapping routine to produce surface-normal variations for any
specified bump function.
9.4 How is an image produced with an environmental map different from a ray-traced
image of the same scene?
9.5 In the movies, the wheels of cars often appear to be spinning in the wrong direction.
What causes the effect? Can anything be done to fix this problem? Explain your answer.
9.6 Why do the patterns of striped shirts and ties change as an actor moves across the
screen of you television?
9.7 Why should we do anitialiasing by preprocessing the data, rather than by post
processing them?
9.8 Suppose that we have translucent surfaces characterized by opacities α1 and α2.
What is the opacity of the translucent material that we create by using the two in series?
Give an expression for the transparency of the combined material.
9.9 Devise a method of using texture mapping for the display of voxel data.
9.10 Suppose that a set of objects is texture mapped with regular patterns such as stripes
and checkerboards. What is the difference in aliasing patterns that we would see when
we switch from parallel to perspective views?
9.11 Consider a scene composed of simple objects, such as parallelepipeds, that have
different sizes. Suppose you had a single texture pattern and you are asked to map this
texture to all the objects. How would you map the texture so that the pattern would be
the same size on each face of the object?
9.12 Write a program to generate the gas solid space and write the volume visualization
program of generated solid space. Describe the noise, turbulence, shaping and ray
tracing techniques you have used.

