
Chapter 9: Surface Reality 
Techniques 
Modeling and rendering of every 3-D detail of a surface is very tedious and in many 
applications inefficient solution. A common method for adding surface detail is to map 
texture patterns onto the surfaces of objects. A solid space allows the generalization of 
traditional solid texturing in 1-D, 2-D or 3-D domains. The solid space can be 
represented either by an array or by a mathematical function. Such solid spaces are 
either mapped onto a surface of an object in 3-D or directly projected into a screen 
space by using the volume rendering visualization techniques.  

9.1 Mathematical Description of Solid Spaces 
Solid spaces are three-dimensional spaces associated with an object that allow for 
control of an attribute of the object. The solid space framework encompasses traditional 
solid texturing, hypertextures, and volume density functions within a unified framework. 
Solid texturing applied to the object, is as if the defining space is being carved away 
similar to carving the object made from wood and marble. Solid-space examples include 
also the geometry defined by volume density functions (as is discussed in Chapter 11), 
roughness, bump mapping, reflectivity, transparency, illumination characteristics, and 
shadowing of objects.  
 
Definition 9.1:  Solid space is a function mapping the m dimensional unit cube (m=2, or 
3) into the n-dimensional space, S: D⊂ (0,1)m→H⊂ Rn. The two- or three-dimensional 
solid space is defined as follows 
 S(s,t) = F, F∈ Rn, n = 1, 2, 3, … 
          S(r,s,t) = F, F∈ Rn, n = 1, 2, 3, … 
 
With no loss of generality, we scaled the solid space coordinates r, s, and t to vary over 
the interval (0,1). The definition of solid space can change over time and then the time 
could be considered to be an additional dimension to the solid space function, S(r,s,t,T). 
The solid space, S is usually a continuous function throughout definition space D, but it 
is not a necessarily requirement. Note that the choice of F determines the frequencies in 
the resulting solid spaces, and, therefore, the amount of aliasing artifacts that may 
appear in a final image.  
 

9.2 The Mappings 
The mapping algorithms can be thought of as modifying the shading algorithm by using 
the solid space to alter surface parameters, such as material properties and normals. 
There are three major approaches: 

1. Texture mapping uses a pattern or texture to determine the color of a pixel 
giving detail by painting patterns onto smooth surfaces.  

2. Bump mapping distorts the shape of the surface to create variations, such as 
the bumps or waves on water surface.  

3. Environmental mapping allows us to create images that have the appearance 
of ray-traced images without having to trace reflected rays. As a result, the 
environment is painted onto the surface as that surface is being rendered.  

All the methods rely on the texture being stored as a discretized two- or three-
dimensional solid space.  
 

9.3 Two-Dimensional Texture Mapping 
Let us start with a two-dimensional texture pattern defined by a solid space S(s,t), where 
variable s, and t are known as texture coordinates. We can thing of S as continuous, 
although, in discrete form it occupies the memory as an n × m array of texture elements 
called texels.  
A texture mapping, M: (s,t)→(xs,ys) associates a unique point of solid space , S with 
each point on a geometric object that is itself mapped to screen coordinates (xs,ys) for 
display. Let the object be represented in spatial object coordinates (x,y,z) we can 
represent a texture map M as composition of a mathematical function that maps from 
texture coordinates to geometric coordinates, MT: (s,t)→(x,y,z), and a projection 
function that maps from geometric coordinates to screen coordinates, MVP: (x,y,z)→ 
(xs,ys). Formally, we can write that 
 M = MVP⋅MT. 
Function MT is usually used to map the rectangular area to an arbitrary region in three-
dimensional space. It may be a complicated function, or may have undesirable 
properties, like distortion of shapes at distances.  
If the geometric object is defined by using parametric surfaces, F: (u,v) →(x,y,z) we 
should use the two concurrent mappings, the first from texture coordinates to parametric 
coordinates, MP: (s,t)→(u,v), and the second from parametric coordinates to geometric 
coordinates, F, as shown in Figure 9.1.  Formally, we can write that 
 MT = F⋅MP. 
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Figure 9.1. Mapping compositions used in texture mapping. 

9.3.1 Forward Texture Mapping Algorithm 
The forward mapping uses the map, M, from texture coordinates to screen coordinates. 
The screen space defined by screen coordinates is dicretized as an ns × ms array of 
image elements called pixels. A small rectangular area of the texture pattern S(s,t), maps 
to the curved area in the screen space. The texture values S(s,t), can then be used to 
either modify the color or assign a color to the pixels covered by the projected curved 
area in the screen space. A disadvantage of this mapping is that a selected rectangular 



area in texture coordinates does not match up with the pixel boundaries in the discrete 
screen space, thus requiring calculation of the fractional area of pixel coverage.  

9.3.2 Backward Texture Mapping Algorithm  
The inverse mapping from screen coordinates to texture coordinates is the most 
commonly used texture-mapping method. The method avoids pixel subdivision 
calculation and allows antialising (filtering) procedures to be easily applied. However, 
the backward method requires calculation of the inverse viewing-projection 
transformation MVP

-1 and the inverse texture-map transformation MT
-1. We are 

determining the color of a squared pixel centered at screen coordinates (xs,ys)  from a 
corresponding curved area in texture coordinates.  
One simple method is to use the point (s,t) obtained by inverse projection of the pixel 
center to find a texture value S(s,t). Although, a simple method, it is subject to serious 
aliasing problem particularly if the texture is periodic, as shown in Figure 9.2. 
Neglecting the finite size of a pixel can lead to moiré patterns in the screen space. A 
better approach is to assign a texture value based on averaging of the values in the 
curved area in texture coordinates.  
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Figure 9.2. Aliasing in texture mapping. 

 

Examples 9.1: Invertible MP maps.  
1. Given a parametric surface, we can often map a point in the texture S(s,t) to a point 
on the surface p(u,v) by a linear map of the form 
 u = as + bt + c, 
 v = ds + et +f. 
Providing that ae ≠ bd this linear map is invertible. 
 
2. Linear mapping can also trivially map the texture to a parametric patch. When a 
parametric patch corners (umin, vmin) and (umax, vmax) corners correspond to the texture 
corners (smin, tmin) and (smax, tmax), as shown in Figure 9.3, we can write the mapping 
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The linear mapping is easy to implement but it does not take into account the curvature 
of the surface and therefore texture patches are stretched.  
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Figure 9.3. Linear mapping. 

 

Examples 9.2: Texture mapping.  
Suppose that the texture coordinates vary over the unit square, we consider the transfer 
of the pattern to a cylindrical surface of height h and radius r. Points on the quarter of 
the cylinder are given by the parametric equations F: (u,v) →(x,y,z), 
 x = r cos(u), y = r sin(u), z = v/h, 0 ≤ θ ≤  π/2. 
We cam map the pattern to the surface with the following linear transformation MP: 
(s,t)→(u,v), 
 u = sπ/2, v = t. 
Next, when we perform the inverse viewing transformation from screen coordinates to 
the object coordinates. Object coordinates are then mapped to the surface parameters 
with the inverse transformation, F-1, 
 u = tan-1(y/x), v = z*h, 
and to the texture space with, MP

-1, 
 s = 2u/π, t = v. 
 

9.4 Two-Part Texture Mapping  
The two-part mapping uses the intermediate surface, such as a sphere, cylinder, or cube 
for texture mapping of complicated object surfaces. In the first step, the texture is 
mapped to the intermediate shape. In the second step, the intermediate surface 
containing the texture is mapped to the object surface being rendered. There are three 
possible strategies to perform the second step. First method takes the value of a texture 
and goes in the direction of the intermediate surface normal until the object is 
intersected, and he color o f the intersection point is the color of the texture. The second 
method uses the inverse approach, starting at the object surface and going in the object 
surface normal direction until we interest the intermediate object, where we read the 
texture value. The third possibility is to draw the lines from the center of the object and 
find both the intersection with object and intermediate surface. The texture at the point 
of intersection with the intermediate surface is assigned to the intersection point on the 
object as shown in Figure 9.4. 
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   a)      b)     c) 
Figure 9.4. Two-part mapping. (a) Going in the direction of intermediate surface normal. 

(b) Going in the normal of he object surface. (c) Going in the direction of central line. 
 

9.5 OpenGL Texture Mapping 
The OpenGL contains the functionality o map one- and two-dimensional textures to 
one- through four-dimensional graphical objects. The texture mapping is done, as 
primitives are rasterized by mapping three-dimensional points to locations on the 
display. Each fragment of the object is tested for visibility and is shaded if visible. 
Suppose that we have a 512×512 my_texels representing our discretized solid space 

glubyte my_texels[512][512]; 
We specify that this array is to be used as a two-dimensional texture  
 glTexImage2D(GL_TEXTURE_2D, level, components, width, height, border, 
format, type, my_texels); 
The format of image having three color components R, G, B is described by GL_RGB, 
the type is GL_UNISIGNED_BYTE, and the value components is equal to 3 for RGB 
components. To enable he texture mapping we use 
 glEnable(GL_TEXTURE_2D); 
 Other part of setting up a texture mapping is to specify the mapping of the texture onto 
a geometric object. We can do this by assigning the correspondence between corner 
texture coordinate and the object coordinate of a quadrilateral by the following code  
 glBegin(GL_QUAD) 
  glTexCoord2f(0.0,0.0); /* Assign the texture coordinate (0,0) */ 
  glVertex2f(x1, y1, z1); /* to (x1, y1, z1) object coordinates. */ 
  glTexCoord2f(1.0,0.0);  
  glVertex2f(x2, y2, z2); 

 glTexCoord2f(1.0,1.0);  
  glVertex2f(x3, y3, z3); 

 glTexCoord2f(0.0,1.0);  
  glVertex2f(x4, y4, z4); 
 glEnd(); 
We also could set new normal or colors before we specify each vertex. When projecting 
the pixel to the texture coordinates, it can be smaller or larger than one texel. To avoid 
this problem of aliasing the OpenGL uses a 2 × 2 average on the four closest texels if 
we specify  
 glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LIN
EAR); 
 glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LIN
EAR); 
A better technique but more memory consuming is called mipmapping. We do not need 
the resolution of the original texel array, for objects that project to an area of screen 

space that is smaller compared with the size of the texel array. In OpenGL we can 
generate texture array at reduced sizes automatically. For example a 64 × 64 texture 
array, can be reduced to series of arrays with sizes 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, 
and 1 × 1 by a function 
 gluBuild2Dmipmaps(GL_TEXTURE_2D,3,64,64,GL_RGB,GL_UNSIGNED_
BYTE,my_texels); 
The mipmaps are put in use automatically if we specify 

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEA
REST_MIPMAP_NEAREST); 
Advance texture features provide the possibility to map surface textures directly onto a 
three-dimensional mesh.  OpenGL can also provide a spherical mapping, as we 
discussed in the Section for two-part texture mapping.   
 

9.6 Environment Mapping 
High reflective surfaces are characterized by specular reflections that mirror the 
environment. For example, a shiny ball in the center of a room reflects all the walls of 
the room. We can extent the texture mapping techniques to project the reflected 
environment onto the object surface. The idea is similar to two-part texture mapping. At 
first, we obtain an image of the environment on an intermediate projection surface; 
usually a box is used for environments such as a room. The environmental image is 
obtained by putting the center of projection at the center of the reflective object. An 
example of environmental image of a room projected on the box is shown in Figure 9.5. 
Similar to two-part texture mapping, the texture value at a point on the object is 
obtained from the corresponding point on the intermediate surface calculated from the 
reflection vector, r and location of the viewer (view direction v), Figure 9.5.  
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a)       b) 
Figure 9.5. Environmental mapping with a box. a) Image of the environment. b) 

Environmental mapping from the intermediate surface 
 
In OpenGL we invoke this algorithm by the lines 
 glTexGenfv(GL_S, GL_SPHERE_MAP, 0); 
 glTexGenfv(GL_T, GL_SPHERE_MAP, 0); 
 glEnable(GL_TEXTURE_GEN_S); 
 glEnable(GL_TEXTURE_GEN_T); 
 



9.7 Bump Mapping 
The real strawberry is characterized primarily by small variations in its surface, rather 
than by variations in its color. The bump mapping technique generates small variations 
of the surface by perturbing the normal vectors as the surface is rendered; the highlights 
and colors than give the impression of surface variations. This method is based on the 
idea that the surface shape at a point is characterized by the normal at this point and 
small neighborhood. Small perturbation to the normal vectors applied on a smooth 
surface gives the appearance of a complex surface.   
Let P(u,v) = (x(u,v),y(u,v),z(u,v)) be appoint on a parametric surface, the unit normal 
vector at that point is derived from a cross product 
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parameters u and v. Suppose we displace the surface in he normal direction by a 
function called the bump function, d(u,v): 

P’=P+d(u,v)n.  
We prefer to use only the normal of perturbed surface in shading calculations obtained 
as 
 n` = Pv` × Pv`. 
Where the perturbed partial derivatives are obtained as 
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Assuming the d(u,v) is small, we can neglect the last term of both equations. 
Substituting the equation into the above cross product and noting that n × n = 0 we 
obtain the perturbed normal 
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The final step is to normalize n’ for use in the shading model.  

9.8 Blending and Compositing Techniques 
The mechanism called alpha (α) blending can among other effects, create images with 
transparent objects. The alpha channel is the fourth color in RGBA (or RGBα) color 
mode that controls how the RGB values are written into the frame buffer.  In the solid 
space terminology we write S(s,t) = F = (RGBA), F∈ R4.  
The opacity of a surface is a measure of how much light penetrates through that surface. 
An opacity (α) equal to 1 corresponds to a completely opaque surface that blocks all 
light, while an opacity of 0 is completely transparent surface. Having several polygons 
with defined alpha channel, the combination of their color is similar to joining two 
pieces of colored glass into a single piece of glass that has higher opacity and a color 
different from either of the original pieces.  
Let us have two texels represented with four elements (RGBα) s = [sr, sg, sb, sa], d = [dr, 
dg, db, da], then a blending operation replaces d with  
 d’ = [bsr + cdr, bsg + cdg, bsb + cdb, bsa + cda]. 
The constants b and c are the source and destination blending factors. As it can occur 
after blending the colors, a value of α>1 is limited (clamped) to the maximum of 1.0, 
and α<0 is clamped to 0.0.  

Usually, we wish to keep our RGB colors between 0 and 1 in the final image, without 
having to clamp those values greater than 1. Suppose, we have n images that should 
contribute equally to the final display. We can either scale the values of each texel, or 
use the source and destination blending factors by 1/n.  
 In OpenGL we enable blending by  
 glEnable(GL_BLEND); 
The desired source and destination factors can be set up by 
 glBlendFunc(source_factor, destination_factor); 
Many applications use the source factor α and the destination factor 1-α. The resulting 
color in OpenGL is 
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This formula ensures that both transparent and opaque polygons are handled correctly 
and that neither colors nor opacities can saturate. The major difficulty with this blending 
technique is that the order in which we render the polygons affects the image. To get a 
desired effect, we must now control this order within the application. 

9.9 Fog 
We can create the illusion of depth by drawing textures father from the viewer dimmer 
than textures closer to the viewer, a technique known as depth cueing. A simple 
implementation uses the α blending technique.   
A fog creates the illusion of partially translucent space between the object and the 
viewer, by blending each texture fragment in a distance dependent manner. If the texel 
has a value Cs and the color of fog is Cf, then the final color of pixel in screen 
coordinates is 

( ) .1 fss ff CCC −+=′  

The depth-cueing effect is obtained if f varies linearly depending on the distance from 
eye position. Fog density function is the exponential function of distance, z, from eye 
position 
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OpenGL supports the fog densities in RGBA mode by using the function calls 
 GLfloat fcolor[4] = { …} 
 glEnable(GL_FOG); 
 glFogf(GL_FOG_MODE, GL_EXP); 
 glFogf(GL_FOG_DENSITY, 0.5); 
 glFogfv(GL_FOG_COLOR, fcolor); 

9.10 Volumetric Rendering of Solid Spaces 
Let us focus now on the three-dimensional solid space S(r,s,t). We can thing of S as 
continuous, although, in discrete form it occupies the memory as an n × m × l array of 
elements called voxels. Function S can be defined by procedural methods or by using 
the three-dimensional volume density functions that define the density of a continuous 
three-dimensional space. The volumetric density function is the natural extension of 
solid texturing to describe the actual geometry of objects. They are extensively used in 
computer graphics for modeling and animating gases, fire, fur, liquids, and other soft 
objects.  
For true three-dimensional images and solid spaces, volume rendering must be 
performed. Volume rendering is a mapping, M: (r,s,t)→(xs,ys) which associates a unique 
point of solid space, S with each point on a screen coordinates (xs,ys) for display. We 
will discuss the method, which is described in detail in Ebert and Parent 1990. The ray 



from eye through the pixel (xs,ys) is traced through the defining solid space. For each 
increment (voxel) along the ray through the volume sections, the solid space function is 
evaluated. The color, density, opacity, shadowing, and illumination of each sample are 
then accumulated based on illumination model for gases and atmospheric attenuation.   
 

9.10.1 Algorithm: Volume Rendering  
for each section of volume 
 for each increment (voxel) along the ray 
  get color, density, opacity of this voxel 
  if (self shadowing) 
      retrieve the shadowing of this element from the solid shadow table 
  color = calculate the illumination of the volume using the  

            opacity, density, and the appropriate model 
  final_color = final_color + color; 
  sum_density = sum_density + density; 
  if ( transparency < 0.01 ) 
      stop tracing 
 increment sample point (voxel) 
create a buffer fragment 
 

9.10.2 Illuminating of Gaseous Phenomena 
The opacity is the density obtained from evaluating the volume density function 
ρ(x(u),y(u),z(u)) multiplied by the step size ∆u along the ray approximated as 
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where τ is the optical depth of material, unear is the entering point of the ray to the 
volume,  ufar is the ending point. The density function is defined in the solid space, 
ρ(x(u),y(u),z(u)) = S(r,s,t). 
The intensity of a pixel (xs,ys) in screen coordinates is calculated by the following 
illumination model 
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Ii(x(u),y(u),z(u)) is the amount of light from light source i reflected from voxel (x,y,z), 
phase(θ) is the phase function characterizing the total brightness of a voxel as a function 
between the light and the eye. Self-shadowing of the gas is incorporated into I by 
attenuating the brightness of each light source.   
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Figure 9.6. Volume rendering of solid spaces. 

9.11 Geometry of Gases 
After some background material has been discussed, this section will describe detailed 
procedures for modeling gases. The geometry of gases is modeled using turbulent-flow-
based volume density functions. For each location in the solid space, we generate the 
noise and apply the turbulence function. The noise implementation uses trilinear 
interpolation of random numbers stored at the lattice points of regular grid to calculate 
the noise for any point.  
The turbulence() function given below is the standard turbulence function: 
 
float turbulence(pnt, pixel_size) 
 xyz pnt; 
 float pixel_size; 
{ 
   float t, scale; 
   t=0; 
   for(scale=1.0; scale > pixel_size; scale/=2.0) 
      { 
         pnt.x /= scale; pnt.y /= scale; pnt.z /= scale; 
        t += calc_noise(pnt) * scale; 
      }    
   return(t); 
}  
 
Several basic mathematical functions are used to shape the geometry of the gas. The 
simplest shape function is the power function  

,)*( 2
1
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where t is turbulated point of the solid space, and  p1, p2 are parameters. In the following 
example of a code, we demonstrate a simple gas procedure: 
 
basic_gas(pnt, density, parms) 
 xyz pnt; 
 float *density, *parms; 
{ 
   turb = turbulance(pnt, pixel_size); 
   density = pow(turb*parms[1], parms[2]); 
} 
 



This procedure takes as input the location of the point being rendered in the solid space, 
pnt, and a parameter array. The returned value is the density of the gas. Parms[1] is the 
maximum gas density within the range (0.0, 1.0), and Parms[2] is the exponent for the 
power function.   
 

9.12 Smoke in OpenGL 
One easy technique involves capturing a two-dimensional cross section or image of a 
puff of smoke with both luminance and alpha channels for the image. The image can 
then be texture mapped onto a quadrilateral and blended into the scene. The color and 
alpha value of the quadrilateral can be used to control the color and transparency of the 
smoke in order to simulate different types of smoke. The size, position, orientation, and 
opacity of the quadrilateral can be varied as a function of time to simulate the puff of 
smoke enlarging, drifting and dissipating over time as shown in Figure 9.7. 
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Figure 9.7. Scaling the image of a smoke. 

  

9.13 Vapor trails emanating from a jet or a missile  
A texture image consisting only of alpha values is used to modulate the alpha values of 
a white billboard polygon. The trajectory of the airborne object is painted using multiple 
overlapping copies of the billboard as shown in Figure 9.8. Over time, the individual 
billboards gradually enlarge and fade. The program for rendering a trail requires 
maintaining an active list of the position, orientation and time since creation for each 
billboard used to paint the trail. 
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Figure 9.8. Vapor trails. 

Exercises 
9.1 Write a program to implement texture mapping for the spherical surfaces and for 
polyhedrons.  
9.2 Given a spherical surface, write a bump mapping procedure to generate the bumpy 
surface of an strawberry.  
9.3 Write a bump-mapping routine to produce surface-normal variations for any 
specified bump function. 
9.4 How is an image produced with an environmental map different from a ray-traced 
image of the same scene? 
9.5 In the movies, the wheels of cars often appear to be spinning in the wrong direction. 
What causes the effect? Can anything be done to fix this problem? Explain your answer. 
9.6 Why do the patterns of striped shirts and ties change as an actor moves across the 
screen of you television? 
9.7 Why should we do anitialiasing by preprocessing the data, rather than by post 
processing them? 
9.8 Suppose that we have translucent surfaces characterized by opacities α1 and α2. 
What is the opacity of the translucent material that we create by using the two in series? 
Give an expression for the transparency of the combined material. 
9.9 Devise a method of using texture mapping for the display of voxel data.  
9.10 Suppose that a set of objects is texture mapped with regular patterns such as stripes 
and checkerboards. What is the difference in aliasing patterns that we would see when 
we switch from parallel to perspective views? 
9.11 Consider a scene composed of simple objects, such as parallelepipeds, that have 
different sizes. Suppose you had a single texture pattern and you are asked to map this 
texture to all the objects. How would you map the texture so that the pattern would be 
the same size on each face of the object? 
9.12 Write a program to generate the gas solid space and write the volume visualization 
program of generated solid space.  Describe the noise, turbulence, shaping and ray 
tracing techniques you have used.  
 
 


