Obsah
- 1 Computer Graphics 2
- 1.1 What you Need to Pass
- 1.1.1 Materials to read
- 1.1.2 Lecture00 "Introduction to Computer Graphics"
- 1.1.3 Lecture01 "Graphics Pipeline"
- 1.1.4 Lecture02 "Ray Tracing 1."
- 1.1.5 Lecture03 "Ray Tracing 2."
- 1.1.6 Lecture04 "Ray Tracing 3."
- 1.1.7 Lecture05 "Light Trasport."
- 1.1.8 Lecture06 "Radiosity."
- 1.1.9 Lecture07 "BRDF."
- 1.1.10 Lecture08 "Shadows."
- 1.1.11 Lecture09 "Texturing 1, 2."
- 1.1.12 Lecture10 "Image Based Rendering 1."
- 1.1.13 Lecture11 "Image Based Rendering 2."
- 1.1.14 Lecture12 "Ask me anything."
- 1.1 What you Need to Pass
- 2 Seminars on Advanced Computer Graphics
- 2.1 Rules / Info
- 2.2 Homeworks
- 2.3 Exercises
- 2.3.1 Exercise00 "Introduction"
- 2.3.2 Exercise01 "Vectors and Matrices"
- 2.3.3 Exercise01 "Ray Casting"
- 2.3.4 Exercise02 "Primitives"
- 2.3.5 Exercise03 [11.03.2015] "Shader & Shading & Shadow"
- 2.3.6 Exercise04 [18.03.2015] "Lights & Shadows"
- 2.3.7 ExerciseLab [25.03.2015] "Laboratory Experiment"
- 2.3.8 Exercise05 [01.04.2015] "More About Shaders"
- 2.3.9 Exercise06 [15.04.2014] "Even More About Shaders"
- 2.3.10 Exercise08 "Postprocessing"
- 2.3.11 Exercise09 [06.05.2015] "Textures"
- 2.3.12 AMA "Ask Me Anything"
- 2.3.13 Final Term "Final Term"
Computer Graphics 2
What you Need to Pass
- Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
- Project and exercise (mandatory, 10+50 points).
- Solve all homework problems (mandatory each one >=30%, 10 points)
- Pass final term (mandatory, 20 points) You will need to solve several problems discussed during lessons.
- Pass oral/written exam: (mandatory, +20 points)
- Summary
- Attendance = 0 or -100 (Fx)
- Exercise = +50..0
- Bonus = +10..0 (optional)
- Homework = +10..4 or +4..0 (Fx)
- Final term = +20..0
- Oral/written exam = +20..0
- Grades
- A = 92-100
- B = 84-91
- C = 76-83
- D = 68-75
- E = 60-67
- Fx = 0-59
- VIEW RESULTS
- Final Term by Mooddle Ecetronic test 160.5.2015 8:10 in M-I)
- Schedule
- Mon (8:10) - Room M-I (lecture)
- Mon (11:30) - Room I-H3 (seminar)
Materials to read
- http://www.cs.princeton.edu/courses/archive/fall00/cs426/
- http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/
- http://www.amazon.com/Mathematics-Computer-Graphics-Undergraduate-Science/dp/1849960224
- http://www.martinus.sk/?uItem=19688 - Moderni Pocitacova Grafika
Lecture00 "Introduction to Computer Graphics"
- Computer Graphics Applications
Lecture01 "Graphics Pipeline"
- What is The Graphics Pipeline
- Vertex Shader
- Primitive Assembly
- Tessellation Shaders
- Geometry Shader
- Geometry Postprocessing and Rasterization
- Fragment Shader
- Frame Buffer Operations
- http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/
- Lecture notes: lesson00.pdf
- Štátnicová téma: Zobrazovací kanál. Grafická pipeline moderného hardvéru, framebuffer, buffer objekty, používané súradnicové priestory, druhy shader programov, druhy optimalizačných techník (view frustum, occlusion, backface culling), príklad shader programov.
Lecture02 "Ray Tracing 1."
- TayTracong Pipeline
- Lecture notes: lesson01.pdf
Lecture03 "Ray Tracing 2."
- Ray Intersections
- Lecture notes: lesson01.pdf
Lecture04 "Ray Tracing 3."
- Ray Tracing Acceleration
- Data structure: grids, BVH, Kd-tree, Directional Partitioning
- Dynamic Scenes
- Beam and Cone Tracing
- Packet Tracing
- Lecture notes: lesson02.pdf
- Poznámky v Slovenčine k téme Dátové Štruktúry a Kd-tree.
- Štátnicová téma: Kanál metódy sledovania lúča a porovnanie s Radiosity metódou. (definícia lúča, definícia tieňového lúča, popis metódy sledovania lúča, generovanie lúča, pochod po lúči (ray traversal), prienik lúča s trojuholníkom, stromová štruktúra lúčov (ray tree) a jej použitie na výpočet lokálnej farby, problém presnosti priesečníkov). Metóda sledovania lúča na GPU, urýchľovacie techniky.
Lecture05 "Light Trasport."
- Physics behind ray tracing
- Physical light quantities
- Visual perception of light
- Light sources
- Light transport simulation: Rendering Equation
- Lecture notes: lesson05.pdf
- Štátnicová téma: Fyzikálny osvetlovací model a výpočet farieb renderovacou rovnicou. (definícia radiancie, definícia BRDF a jej vlastnosti, fyzikálne BRDF Cook-Tarrance, definícia priestorového uhlu, napíšte renderovaciu rovnicu a vysvetlite jej členy).
Lecture06 "Radiosity."
- Diffuse reflectance function
- Radiative equilibrium between emission and absorption, escape
- System of linear equations
- Iterative solution Neuman series
- Lecture notes: lesson05.pdf
- Boo chapter Shading: shading.pdf
Lecture07 "BRDF."
- Bidirectional Reflectance Distribution Function (BRDF)
- Reflection models
- Projection onto spherical basis functions
- Shading Phong model, Blin-Phong model
- Lecture notes: lesson07.pdf
- Homework:
- Physical BRDF
- Ward Reflection Model
- Cook-Torrance model
- Lecture notes: lesson07Phys.pdf
Lecture08 "Shadows."
- Lecture notes: lesson08.pdf
- Štátnicová téma: Tiene, typy tieňov (mäkké, tvrdé, statické, dynamické), typy a popis algoritmov (projekčné, tieňové objemy, tieňové mapy (shadow mapping)), spôsoby implementácie jednotlivých algoritmov, artefakty a ich odstraňovanie, príklad shader programov pre tieňové mapy. Artefakty spôsobené diskretizáciou. Tiene vo Phongovom modeli.
Lecture09 "Texturing 1, 2."
- Texture parameterization
- Procedural methods
- Procedural textures
- Fractal landscapes
- Lecture notes: lesson09.pdf
- Book chapter (Surface reality techniques): lessonBoook09.pdf
- Štátnicová téma: Lokálne osvetľovacie modely. (tieňovanie, Phongov a Blinn-Phongov osvetlovací model, zložky (ambientna, difúzna, zrkadlová), textúrovanie a druhy textúr, mapovanie a filtrácia textúr, popísať princípy environment, bump, normal mapovania, textúrovací a tangenciálny priestor, príklad shader programov na GPU.
Lecture10 "Image Based Rendering 1."
- Plenopticfunction
- Panoramas
- Concentric Mosaics
- Light Field Rendering
- The Lumigraph
- Lecture notes: lesson10.pdf
- Homework: Blinn-Phong enumeration.
Lecture11 "Image Based Rendering 2."
- Layered Depth Images
- View-dependent Texture Mapping
- Surface Light Fields
- View Morphing
- Lecture notes: lesson10.pdf
- Štátnicová téma: Metódy zobrazenia scény množinou obrázkov. Definícia plenoptickej funkcie a jej tvorba, popis IBR (Image Based Rendering) metód ako sú Svetelné polia (Light Field), geometrické IBR metódy, aliasing a výpočet hustoty obrázkov, metóda svetelných polí na ploche objektu (Surface Light Fields)).
Lecture12 "Ask me anything."
- Test problem introduction
Seminars on Advanced Computer Graphics
Rules / Info
- On every seminar we will implement selected problems/algorithms related to lessons. We will usually - not necessary start with a prearranged template downloadable from this site.
- As a programming language we will use C#. We will use Visual C# 2010 as development environment. Alternatively you can use MonoDevelop (Linux / Mac OSX) on your own machine.
Homeworks
- You can get max 100% per homework. Submission after deadline is for 0%.
- There is a min 60% of your final evaluation required for admission to final term.
- Additional activity can be awarder by max 10% of your final evaluation.
- Don't cheat - create instead. Any kind of cheating is punished by withholding 30% of your final evaluation for all involved students.
- As a homework, you will program what we could not finish during the exercise. Assignment and template will be downloadable from this site. See exercises.
Exercises
Exercise00 "Introduction"
- Motivation?
- Theory / Reading?
- Scratchapixel Lessons - intersections, polygones, phong lighting
- Ingo Wald's Thesis - PhD. thesis about rendering, acceleration and global illumination.
- Physically Based Rendering
- Practice?
- Intro to c#?
Exercise01 "Vectors and Matrices"
- Create a simple application for vectors(4x1) and matrices(4x4)
- Info | Sample | Template
- Inverse Matrix | Adjoint Matrix | Adjoint Matrix Wiki
Exercise01 "Ray Casting"
- Seminar slides
- Implement a camera class suitable for the ray casting method. As usual you should use a similar functionality as in the sample application. Application should specifically be able to:
- Render the scene (objects are movable).
- Move the camera in a 3D space.
- Change the camera's field of view (larger angle = more space to render), see Blender camera.
- Try to change the color of the intersected object due to distance from the camera
- [2 bonus %]:
- Create a camera which will rotate around defined point P (target) along a sphere with r = 1. You can use ideas from the Blender camera system and / or two-angle camera in openGL. Camera should use some sort of interactivity (2 angles) and targeted point P should be movable. Bonus camera can be created in a separated solution or you can change the structure in the template to implement two different cameras.
- Example Camera Movement
- Sample | Template
Exercise02 "Primitives"
- Seminar slides
- Improve your tracer by adding a few primitives (ring, sphere, AABB box, triangle) [1] [2] [3] [4]. Each object should be movable. As usual you should use a similar functionality as in the sample application.
- [1 bonus %]:
- Create also a cylinder and a cone primitives
Exercise03 [11.03.2015] "Shader & Shading & Shadow"
- Seminar slides
- Improve your tracer by adding shaders, shadows and lights. Implement checker and phong shader, sun light and hard shadows. Compute normals to each primitive in the point of intersection. As usual you should use a similar functionality as in the sample application.
Exercise04 [18.03.2015] "Lights & Shadows"
- Seminar slides
- Improve your tracer by adding a point light, spot light [5] and an area light. In the case of point and spot light, define the light as a point with hard shadows and linear/quadratic light attenuation [6]. Area light could be defined by Lights x Lights point lights. Area light should also be able to produce soft shadows.
- [1 bonus %]:
- Write equation for illumination computed by sample code from seminar slides
ExerciseLab [25.03.2015] "Laboratory Experiment"
- Could we imitate materials from the real world?
- Yes we can and we will. Choose a sample paint and
- Measure its color in Lab and Convert to RGB - Easy RGB (use illuminant D50)
- Measure gloss value in different conditions
- Write your results: Template
- Fill out online form with selected results (during the seminar)
- Guidelines are in the template
- Submit your results as a regular submission by mail
Exercise05 [01.04.2015] "More About Shaders"
- Seminar slides
- Improve your tracer by adding a few more shaders: Toon / Cell, Cook-Torrance, Oren-Nayar, Gradient. As usual you should use a similar functionality as in the sample application.
- Set Cook-Torrance color to match your measurements from Laboratory exercise.
- [2 bonus %]:
- Implement Ward Shader [ Example ]
- You should generate tangent space for each point on the sphere
- Remember to keep the same orientation of tangent space at each point
- You can replace Phong sphere with a Ward sphere
- Deadline: 15. 4. - 16:25
Exercise06 [15.04.2014] "Even More About Shaders"
- Seminar slides
- Improve your tracer by adding reflections and refractions to render mirror and glass objects. As usual you should use a similar functionality as in the sample application.
- '[1 bonus %]:
- Implement fresnel effect
Exercise08 "Postprocessing"
- Seminar slides
- Improve your raytracer by adding supersampling SSAA / FSAA [7].
- Implement blur. User can scale the intensity of blur [8]
- [2 bonus %]:
- Implement DOF. You can use definition from blur to create a fake DOF. User can define a point of sharpness and the intensity of the effect.
Exercise09 [06.05.2015] "Textures"
AMA "Ask Me Anything"
- Send your questions in advance to homework email
Final Term "Final Term"
- Final test in moodle
- Oral exam afterwards for successful students