State examinations for Master program in Applied Informatics/sk: Rozdiel medzi revíziami

Riadok 37: Riadok 37:
 
Študent si ťahá štyri otázky z rôznych predmetov, na základe deklarovaných absolvovaných predmetov, náhodne.
 
Študent si ťahá štyri otázky z rôznych predmetov, na základe deklarovaných absolvovaných predmetov, náhodne.
  
# Kuželosečky, ich klasifikácia; závislosť klasifikácie od typu roviny; vyšetrovanie tvaru rovinnej krivky; priesečníky priamky s krivkou, dotyčnica, singulárne body, inflexné body; kubické krivky; weierstrassov normálny tvar; wliptické krivky a ich využitie.
+
# Vybrané kapitoly z geometrie pre grafikov
 +
1. Kuželosečky, ich klasifikácia. Závislosť klasifikácie od typu roviny (afinná, projektivna).
 +
2. Vyšetrovanie tvaru rovinnej krivky. Priesečníky priamky s krivkou, dotyčnica, singulárne body, inflexné body.
 +
3. Kubické krivky. Weierstrassov normálny tvar. Eliptické krivky a ich využitie.
 +
# Počítačové videnie (1)
 +
4. Pokročilé techniky predspracovania obrazu (zero-crossing a Marr-Hildrethovej operator, adaptívne okolie bodu, segmentácia na princípe povodí)
 +
5. Matematická morfológia (dilatácia, erózia, otvorenie, zatvorenie, top-hat, hit and miss, podmienená dilatácia), morfológické operácie šedotónového obrazu, použitie pri spracovaní obrazu.
 +
6. Porozumenie 3D obrazu (riadiace stratégie porozumenia obrazu: zdola nahor, zhora nadol a kombinované, rekonštrukčné videnie, videnie založené na 3D modeloch, paradigmy 3D videnia: Marrov model, aktívne, účelové videnie)
 +
7. Počítačové videnie s jednou kamerou (geometria jednoduchej perspektívnej kamery, projektívna rovnica, kalibrácia kamery, vonkajšie a vnútorné parametre, rekonštrukcia vzoru z jeho obrazu)
 +
8. Stereovidenie (kanonické stereo a určovanie hĺbky scény, geometria dvoch kamier, epipolárne ohraničenie, fundamentálna matica a jej určovanie, riešenie problému stereo korešpondencie).
 +
 
 +
 
 
# Pokročilé techniky predspracovania obrazu; techniky rozpoznávania objektov; porozumenie 3D obrazu; počítačové videnie s jednou kamerou; stereovidenie.
 
# Pokročilé techniky predspracovania obrazu; techniky rozpoznávania objektov; porozumenie 3D obrazu; počítačové videnie s jednou kamerou; stereovidenie.
 
# Referenčný model počítačovej grafiky, súradnicové systémy a ich transformacie, rozširenie modelu pre augmented reality; pracovna stanica a jej funkčnosť; kódovanie grafickej informacie, hierarchia obrazu a graf scény; fyzické a logické vstupné zariadenia, ISO model vstupu, vstupné režimy, programovanie interakcie; oknové systémy, ich struktúra a funkčnosť.
 
# Referenčný model počítačovej grafiky, súradnicové systémy a ich transformacie, rozširenie modelu pre augmented reality; pracovna stanica a jej funkčnosť; kódovanie grafickej informacie, hierarchia obrazu a graf scény; fyzické a logické vstupné zariadenia, ISO model vstupu, vstupné režimy, programovanie interakcie; oknové systémy, ich struktúra a funkčnosť.

Verzia zo dňa a času 11:36, 15. máj 2015

9.2.9. Sylaby štátnych záverečných skúšok
magisterského študijného programu
Aplikovaná informatika
a
Aplikovaná informatika (konverzný program)

Garant: Doc. RNDr. Roman Ďurikovič, PhD.
             durikovic @ fmph.uniba.sk


Štátnicový predmet 2-AIN-990 Obhajoba diplomovej práce

  1. Hodnotenie A
  2. Hodnotenie B
  3. Hodnotenie C
  4. Hodnotenie D
  5. Hodnotenie E môže získať samostatná práca spĺňajúca viac ako 2/3 zadaných cieľov v prihláške s pôvodnými správnymi výsledkami.
  6. Hodnotenie Fx ostatné práce nezaradisteľné do lepšieho hodnotenia; plagiatorstvo (s návrhom na vylúčenie zo štúdia); zjavne odfláknutá niektorá casť práce, implementácie alebo prezentácie; práca nespĺňajúca viac ako 2/3 zadaných cieľov v prihláške.

Práca nebude akceptovaná na obhajobu ak nebude spĺňať nasledujúce základné požiadavky: a, zmluva nebude obsahovať všetky potrebné podpisy. b, nebude dodržaná štruktúra práce a obsah jednotlivých častí c, práca bude kompilátom sekundárnych zdrojov bez vlastného výskumu a analýz. d, v práci nebudú uvedené referencie na použité zdroje, čiže vyskytne sa v nej plagiátorstvo alebo zneužitie Internetu e, autor/ka nedodrží uvedené požiadavky na formu f, jazyková úroveň práce nebude zodpovedať úrovni absolventa magisterského štúdia.

Štátnicový predmet 2-AIN-950 Metódy aplikovanej informatiky

Študent si ťahá dve otázky náhodne.

  1. Reprezentácie objektov v počítačovej grafike, algoritmy pre určovanie viditeľného povrchu, hľadanie prienikov a orezávanie, rasterizácia a antialiasing, zobrazovací kanál, súradnicové sústavy v zobrazovacom kanáli.
  2. Agent, PEAS popis agenta, typy jednoduchých agentov, racionálny agent; informovane a neinformované prehľadávanie, heuristiky, hľadanie heuristík; logickí agenti, databáza znalosti, inferenčné algoritmy pre výrokovú databázu znalosti; predikátová databáza znalosti, modus ponens, resolvencia, forward a backward chaining; minimax, alfa beta orezávanie, pre dvoch aj viacerých hráčov.
  3. Problémy a algoritmy; základné výpočtové modely a miery zložitosti; zložitostné triedy, ich základné charakteristiky a hierarchie; redukcia a úplnosť v zložitostných triedach; NP-úplné problémy; metódy, používané na riešenie (výpočtovo) ťažkých problémov.
  4. Základné rozdelenie architektúr paralelných počítačov; progress a safety podmienky; úloha triedenia pre paralelné architektúry; problém večerajúcich filozofov; komunikácia cez chybný kanál.
  5. Časticové systémy, rovnice pohybu prvého rádu, integračné metódy, stavový vektor systému, vonkajšie sily, obmedzujúce podmienky; animácie pohybu a orientácie, quaternion a orientácia; detekcie kolízie, nutná a postačujúca podmienka, sily odozvy (response forces); numerické riešenie diferenciálnych rovníc - Eulerova metóda, Runge-Kuta metóda; dynamika tuhých telies, rovnice pohybu.

Štátnicový predmet 2-AIN-951 Počítačová grafika a videnie

Študent si ťahá štyri otázky z rôznych predmetov, na základe deklarovaných absolvovaných predmetov, náhodne.

  1. Vybrané kapitoly z geometrie pre grafikov

1. Kuželosečky, ich klasifikácia. Závislosť klasifikácie od typu roviny (afinná, projektivna). 2. Vyšetrovanie tvaru rovinnej krivky. Priesečníky priamky s krivkou, dotyčnica, singulárne body, inflexné body. 3. Kubické krivky. Weierstrassov normálny tvar. Eliptické krivky a ich využitie.

  1. Počítačové videnie (1)

4. Pokročilé techniky predspracovania obrazu (zero-crossing a Marr-Hildrethovej operator, adaptívne okolie bodu, segmentácia na princípe povodí) 5. Matematická morfológia (dilatácia, erózia, otvorenie, zatvorenie, top-hat, hit and miss, podmienená dilatácia), morfológické operácie šedotónového obrazu, použitie pri spracovaní obrazu. 6. Porozumenie 3D obrazu (riadiace stratégie porozumenia obrazu: zdola nahor, zhora nadol a kombinované, rekonštrukčné videnie, videnie založené na 3D modeloch, paradigmy 3D videnia: Marrov model, aktívne, účelové videnie) 7. Počítačové videnie s jednou kamerou (geometria jednoduchej perspektívnej kamery, projektívna rovnica, kalibrácia kamery, vonkajšie a vnútorné parametre, rekonštrukcia vzoru z jeho obrazu) 8. Stereovidenie (kanonické stereo a určovanie hĺbky scény, geometria dvoch kamier, epipolárne ohraničenie, fundamentálna matica a jej určovanie, riešenie problému stereo korešpondencie).


  1. Pokročilé techniky predspracovania obrazu; techniky rozpoznávania objektov; porozumenie 3D obrazu; počítačové videnie s jednou kamerou; stereovidenie.
  2. Referenčný model počítačovej grafiky, súradnicové systémy a ich transformacie, rozširenie modelu pre augmented reality; pracovna stanica a jej funkčnosť; kódovanie grafickej informacie, hierarchia obrazu a graf scény; fyzické a logické vstupné zariadenia, ISO model vstupu, vstupné režimy, programovanie interakcie; oknové systémy, ich struktúra a funkčnosť.
  3. Kanál metódy sledovania lúča; výpočet farieb renderovacou rovnicou; problém viditeľnosti a tieňa; globálny osvetľovací model; metódy zobrazenia scény množinou obrázkov.
  4. Akceleračné a urýchlovacie techniky, early Z test, culling techniky, úroven detailu, API podpora ; tieňovanie a textúrovanie, základné princípy a rozdiely medzi jednotlivými mapovaniami, tangenciálny priestor; metóda sledovania lúča (ray-tracing) na GPU; tiene; základy objemového zobrazovania na GPU.
  5. Bezstratové kódy v kompresii dát – posuvné, predikčné, kódovanie obrysov (kontúr, hraníc); rekonštrukcia obrazov – operácie opisujúce vznik poškodenia, metódy odstraňovania šumov.
  6. Hľadanie príznakov v obrazoch; klasifikátory (NN, SVM, HMM, ...); aplikácie počítačového videnia (výber obrazov z databázy, detekcia a sledovanie tváre, pokožky); mapovanie farebného rozsahu, HDR; kvalita obrazu (metriky, vyuzitie).
  7. Rozpoznávanie obrazcov (lineárne) separabilných a neseparabilných tried; štatistické rozpoznávanie separabilných tried; štatistické rozpoznávanie neseparabilných tried; syntaktické rozpoznávanie; porovnanie štatistických, syntaktických a ďalších metód rozpoznávania.
  8. Objemové metódy na vizualizáciu objemových dát; povrchové metódy na vizualizáciu objemových dát.
  9. Voronoiov diagram, Delaunayova triangulácia, vlastnosti a vzťahy medzi nimi; definícia a základné vlastnosti VD a DT, ich duálny vzťah, vzťah s konvexným obalom, najbližším párom generátorov, vzťah medzi DT, VD a rotačným paraboloidom z=x*x+y*y, podgrafy DT.
  10. Casteljauov algoritmus vyčísľovania Bézierovej krivky, prerozdelenie, dotyčnica, polárna forma; schéma Casteljauovho algoritmu, zjemnenie krivky na dva segmenty, dotykový vektor krivky, polárna forma polynómu a jej vlastnosti, riadiace vrcholy krivky ako hodnoty polárnej formy, vzťah Casteljauovho algoritmu a polárnej formy, hladké spojenie Bézierovych segmentov.
  11. Grafika a zvuk – aplikačný software; základné grafické a zvukové formáty; kompresné metódy; metódy vytvárania a zavádzania grafiky a zvuku do PC; animácia, video, TV HDTV; videoformáty a kompresia videa; nelineárny videostrih (NLE); mobilné, komunikačné a multimediálne technológie; multimédiá a internet; hypermédiá a videokonferencie; synchronizácia multimediálnych tokov.

Štátnicový predmet 2-AIN-950 Umelá inteligencia

Študent si ťahá štyri otázky z rôznych predmetov, na základe deklarovaných absolvovaných predmetov, náhodne.

  1. Bayesovské siete a bayesovské vyvodzovanie; klasická teória časových radov, trend, periodicita, náhodnosť; Box-Jenkinsove modely.
  2. Časové rady s náhodnosťou: filtračná, predikčná a vyhladzovacia úloha, markovovské modely, Kálmanov filter. Základné modely dynamických sietí.
  3. Metódy strojového učenia. Strojové učenie s učiteľom, bez učiteľa, posilňovaním. (Generalizovaná) lineárna regresia. Klasifikácia pomocou SVM. Rozhodovacie stromy. Markovovské rozhodovacie procesy. Bagging a boosting.
  4. Matematická teória strojového učenia. Matematický model strojového učenia. Výchylka a rozptyl. Preučenie a podučenie. PAC učenie a ohraničenia pre konečne a nekonečné množiny hypotéz. VC dimenzia.
  5. Dopredné neurónové siete: jednoduchý perceptrón (binárny, spojitý); viacvrstvové perceptróny, mechanizmy učenia. Lineárne neurónové siete – princíp modelu General Inverse. Modely so samoorganizáciou: implementácia algoritmu PCA, samoorganizujúca sa mapa (SOM), hlavné koncepty, algoritmy učenia, využitie.
  6. Rekurentné neurónové siete: architektúry, princíp algoritmov učenia BPTT a RTRL, typy úloh vhodných pre tieto typy sietí. Rekurentné autoasociatívne pamäti: Hopfieldov model, deterministická a stochastická verzia, typy atraktorov, typy dynamiky.
  7. Priama a spätná inferencia v expertných systémoch, simulácia inferencie v CLIPS-e, metóda divide&impere v produkčných systémoch, produkčný systém v CLIPS-e na prehľadávanie stavového priestoru s nájdením všetkých riešení, princíp stratifikácie na príklade hľadania optimálnych riešení (bricks-world problem alebo robot v gridovom bludisku).
  8. Princíp fuzzifikácie: fuzzy množiny, lingvistické premenné a termy, modifikátory (hedges), základné typy fuzzy pravidiel (crisp | fuzzy predpoklady, akcie, faktor určitosti pravidla CF, threshold pravidla), priebeh fuzzy inferencie: parciálny matching, kombinácia vstupných fuzzy faktov, modifikácia výstupných faktov, agregácia fuzzy faktov, defuzzifikácia (centre of gravity, mean of maxima metods), teória fuzzy množín na reziduovaných zväzoch.
  9. Reprezentácia znalostí prostriedkami logického programovania. Sémantika logického programovania (interpretácia, model, T_P-operátor, najmenší model, stabilný model). Defaultové teórie. Extenzie. Hierarchické siete. Skeptické a dôverčivé usudzovanie.
  10. Nemonotónne usudzovanie. Všeobecná charakterizácia nemonotónneho usudzovania. Formalizácia usudzovania za prítomnosti nekonzistentosti. Indukcia. Abdukcia. Revízie. AGM-postuláty racionálnosti revízie. TMS - základné štruktúry a procedúry.
  11. Multiagentový system (MAS); reprezentačné a komunikačné jazyky, priama a nepriama komunikácia medzi agentami, implementácia MAS ako middleware, v rámci VM a nad IPC.
  12. Agentovo-orientované programovanie: dekompozícia aktivitou, subsumpcia, PKA model, agent-space.