Seminar KAI feb2010: Rozdiel medzi revíziami

Riadok 3: Riadok 3:
 
11. 2. 2010 (štvrtok), miestnosť B
 
11. 2. 2010 (štvrtok), miestnosť B
  
 +
== Harmonogram ==
  
 
* 09.00 - Úvod  (I. Farkaš / J. Rybár)
 
* 09.00 - Úvod  (I. Farkaš / J. Rybár)
Riadok 18: Riadok 19:
 
== Abstrakty ==
 
== Abstrakty ==
  
* I. Farkaš / J. Rybár: Pár slov o snahe rozvíjať kognitívnu KV na FMFI, najmä z pohľadu výpočtového modelovania. Pár slov k vybraným príspevkom.
+
* '''I. Farkaš / J. Rybár:''' Pár slov o snahe rozvíjať kognitívnu KV na FMFI, najmä z pohľadu výpočtového modelovania. Pár slov k vybraným príspevkom.
  
* Z. Petráková, P. Náther, M. Markošová: Siete, ktoré skúmame v prírode, majú veľmi často podobné vlastnosti. Sú sieťami malého sveta, bezškálovými a hierarchickými sietami. Matematické modely rastúcich sietí dokážu vysvetliť, akými spôsobmi siete s takýmito vlastnosťami vznikajú. Okrem teoretického úvodu ukážeme aj konkrétne spracovanie dát z fMRI meraní mozgu. Spracovanie dát, t.j. extrakcia funkťných sietí mozgu, umožňuje prepojiť teóriu sietí s kognitívnou vedou.
+
* '''Z. Petráková, P. Náther, M. Markošová:''' Siete, ktoré skúmame v prírode, majú veľmi často podobné vlastnosti. Sú sieťami malého sveta, bezškálovými a hierarchickými sietami. Matematické modely rastúcich sietí dokážu vysvetliť, akými spôsobmi siete s takýmito vlastnosťami vznikajú. Okrem teoretického úvodu ukážeme aj konkrétne spracovanie dát z fMRI meraní mozgu. Spracovanie dát, t.j. extrakcia funkťných sietí mozgu, umožňuje prepojiť teóriu sietí s kognitívnou vedou.
  
* J. Malý: Rozlišovacie kritérium je nástroj na zachytenie nejakeho konceptu.Sieť (graf) takýchto konceptov, kde by hrany predstavovali zažité asociácie, môže byť štruktúrou na zachytenie a znovupoužitie poznatkov. Pomocou učenia s posilňovaním môžeme konceptom priraďovať ohodnotenie, ktoré pre agenta predstavuje motiváciu na cielené prehľadávanie grafu a vykonanie akcií v snahe dosiahnuť lepšie ohodnotený stav. Sieť konceptov je potrebné priebežne doplňovať o získavané poznatky a vytvárať z nich zovšeobecnenia. Abstrakcia je
+
* '''J. Malý:''' Rozlišovacie kritérium je nástroj na zachytenie nejakeho konceptu.Sieť (graf) takýchto konceptov, kde by hrany predstavovali zažité asociácie, môže byť štruktúrou na zachytenie a znovupoužitie poznatkov. Pomocou učenia s posilňovaním môžeme konceptom priraďovať ohodnotenie, ktoré pre agenta predstavuje motiváciu na cielené prehľadávanie grafu a vykonanie akcií v snahe dosiahnuť lepšie ohodnotený stav. Sieť konceptov je potrebné priebežne doplňovať o získavané poznatky a vytvárať z nich zovšeobecnenia. Abstrakcia je
 
spôsob, ako sa zbaviť prebytočných informácií (a udržať pamäťovú a výpočtovú zložitosť "na uzde"), a tiež spôsob, ako umožniť predvídanie/prispôsobovanie.
 
spôsob, ako sa zbaviť prebytočných informácií (a udržať pamäťovú a výpočtovú zložitosť "na uzde"), a tiež spôsob, ako umožniť predvídanie/prispôsobovanie.
 +
 +
* P. Vančo: Spracovanie (reprezentovanie) dát so stromovou štruktúrou je výzvou
 +
pre distribuované konekcionistické modely, ktoré disponujú inými mechanizmami než symbolové metódy UI. Zameriame sa na triedu modelov rekurzívnych samoorganizujúcich sa neurónových máp, ktoré dokážu reprezentovať (a vizualizovať) stromové štruktúry, a ktoré možno i analyzovať. Fungovanie takýchto modelov ilustrujeme na príklade.

Verzia zo dňa a času 12:39, 2. február 2010

Srdečne Vás pozývame na ďalší z informatických seminárov, na ktorom sa tento krát predstavia kolegovia a doktorandi KAI, ktorých práca sa týka kognitívnej vedy a umelej inteligencie.

11. 2. 2010 (štvrtok), miestnosť B

Harmonogram

  • 09.00 - Úvod (I. Farkaš / J. Rybár)
  • 09.10 - Z. Petráková, P. Náther, M. Markošová: Aplikácia teórie sietí v biológii: funkčné siete mozgu
  • 09.50 – J. Malý: Asociatívne siete v spojení s rozlišovacími kritériami, učením s posilňovaním a abstrakciou
  • 10.10 – K. Rebrová: Modelovanie pomenovania farieb s využitím rozlišovacích kritérií
  • Prestávka: (tip na vyplnenie času: prednáška prof. Jurišicu)
  • 11.40 – I. Farkaš: Konekcionistické spracovanie viet v jazyku.
  • 12.00 – P. Vančo: Učenie stromových štruktúr pomocou rekurzívnych samoorganizujúcich sa máp
  • 12.20 – M. Čertický: IK-STRIPS: Intuitívne plánovanie so stabilnomodelovou sémantikou
  • 12.40 – Záver

Abstrakty

  • I. Farkaš / J. Rybár: Pár slov o snahe rozvíjať kognitívnu KV na FMFI, najmä z pohľadu výpočtového modelovania. Pár slov k vybraným príspevkom.
  • Z. Petráková, P. Náther, M. Markošová: Siete, ktoré skúmame v prírode, majú veľmi často podobné vlastnosti. Sú sieťami malého sveta, bezškálovými a hierarchickými sietami. Matematické modely rastúcich sietí dokážu vysvetliť, akými spôsobmi siete s takýmito vlastnosťami vznikajú. Okrem teoretického úvodu ukážeme aj konkrétne spracovanie dát z fMRI meraní mozgu. Spracovanie dát, t.j. extrakcia funkťných sietí mozgu, umožňuje prepojiť teóriu sietí s kognitívnou vedou.
  • J. Malý: Rozlišovacie kritérium je nástroj na zachytenie nejakeho konceptu.Sieť (graf) takýchto konceptov, kde by hrany predstavovali zažité asociácie, môže byť štruktúrou na zachytenie a znovupoužitie poznatkov. Pomocou učenia s posilňovaním môžeme konceptom priraďovať ohodnotenie, ktoré pre agenta predstavuje motiváciu na cielené prehľadávanie grafu a vykonanie akcií v snahe dosiahnuť lepšie ohodnotený stav. Sieť konceptov je potrebné priebežne doplňovať o získavané poznatky a vytvárať z nich zovšeobecnenia. Abstrakcia je

spôsob, ako sa zbaviť prebytočných informácií (a udržať pamäťovú a výpočtovú zložitosť "na uzde"), a tiež spôsob, ako umožniť predvídanie/prispôsobovanie.

  • P. Vančo: Spracovanie (reprezentovanie) dát so stromovou štruktúrou je výzvou

pre distribuované konekcionistické modely, ktoré disponujú inými mechanizmami než symbolové metódy UI. Zameriame sa na triedu modelov rekurzívnych samoorganizujúcich sa neurónových máp, ktoré dokážu reprezentovať (a vizualizovať) stromové štruktúry, a ktoré možno i analyzovať. Fungovanie takýchto modelov ilustrujeme na príklade.