Physical-based Animations and Mathematical Modeling Material: Rozdiel medzi revíziami
Riadok 170: | Riadok 170: | ||
− | === | + | === Lesson08 "Rigid body Dynamics” === |
[[File:ca10_lesson08.png]] | [[File:ca10_lesson08.png]] | ||
* Problem definition and motivations | * Problem definition and motivations | ||
Riadok 182: | Riadok 182: | ||
− | === | + | === Lesson09 "Rigid body Collisions and Joints” === |
[[File:ca10_lesson09.png]] | [[File:ca10_lesson09.png]] | ||
* Problem definition and motivations | * Problem definition and motivations | ||
Riadok 194: | Riadok 194: | ||
− | === | + | === Lesson10 "Fluid, Fire and Smoke” === |
[[File:ca10_lesson10.png]] | [[File:ca10_lesson10.png]] | ||
* Problem definition and motivations | * Problem definition and motivations | ||
Riadok 206: | Riadok 206: | ||
− | === | + | === Lesson11 "Final term" === |
[[File:ca10_lesson12.png]] | [[File:ca10_lesson12.png]] | ||
* Don't panic - just few simple questions | * Don't panic - just few simple questions | ||
− | === | + | === Lesson12 "Animation Show" === |
* Show your animation to your colleagues | * Show your animation to your colleagues | ||
Verzia zo dňa a času 18:13, 19. október 2015
Physical based Animations and Mathematical Modelling (Course Materials)
Obsah
- 1 Physical based Animations and Mathematical Modelling (Course Materials)
- 1.1 Student Projects
- 1.2 D-E-A-D-L-I-N-E-S
- 1.3 What you Need to Pass
- 1.4 How to Arrange your Project
- 1.4.1 Lesson01 "Introduction to Computer Animation"
- 1.4.2 Lesson02 "Basic methods in Computer Animation"
- 1.4.3 Lesson03 "Particle Systems"
- 1.4.4 Lesson04 "Soft bodies, Cloths and hair”
- 1.4.5 Lesson05 "Broad Phase Collision Detection"
- 1.4.6 Lesson "All Saints' Day (no lesson)"
- 1.4.7 Lesson06 "Mid Phase Collision Detection"
- 1.4.8 Lesson07 "Narrow Phase Collision Detection"
- 1.4.9 Lesson08 "Rigid body Dynamics”
- 1.4.10 Lesson09 "Rigid body Collisions and Joints”
- 1.4.11 Lesson10 "Fluid, Fire and Smoke”
- 1.4.12 Lesson11 "Final term"
- 1.4.13 Lesson12 "Animation Show"
- 2 EXCERCISES
This lecture ...
- Will focus on simulating natural phenomena
- Will show you what are current topics
- Will improve your skills in
- Newtonian physics
- Computational geometry
- Algorithms and data structures
- Hopefully will not be boring
Student Projects
- Stránka Ráno do práce
- Stránka The_good_the_bad
- Stránka Kiwi Animácia KiWi
- Stránka Knihy Animácia Knihy
- Stránka Motorka
D-E-A-D-L-I-N-E-S
- Animators team (Axx): deadline 14.12.2015 the last lecture
- Show your animation, how far have you made it. It should be 30% of the work done, otherwise your team gets Fx.
- Coders team (Cxx): deadline 17.12.2015 the last exercise
- Show the short DEMO of your project, how far have you made it. It should be 30% of the work done, otherwise your team gets Fx.
- Coders team (Cxx): deadline 26.1.2016
- Create a web page where you write your progress, upload source code, executable, images description of your project and short manual.
- Send link to finished application (zipped source + executable.)
- Your code should be well formatted and commented. Titles of functions, classes, variables should be representative for their purpose.
- If you send it earlier you can get feedback how to improve your application
- Animators team (Axx): deadline 26.1.2016
- Create a web page where you write your progress, upload animation, source of animation, images description of your project and describe all physical effects to be evaluated.
- Upload your animation video on youtube (or some alternative online service)
- Send link to your webpage
- If you send it earlier you can get feedback how to improve your animation
- Oral/written exam (optional): deadline 18.1.2016, 8:00, classroom A
- Instead of (optional) oral exam, you can get (0..+20) points due to a written exam.
- It will be similar to final term, but less complicated.
What you Need to Pass
- Attend lessons. All lessons attended is +0 points. Four and more missed is Fx.
- Show your project (mandatory, 60 points). See later.
- Solve all homework problems (mandatory each one >=30%, 40 points)
- Pass oral/written exam: (optional, +0 .. +20 points) If you feel you are better, convince me ! You can get +20 points max.
- Summary
- Attendance = +0 or -100 (Fx)
- Homework = +40..+12 or 12..0 (Fx)
- Project = +60..0
- Oral/written exam optional = +20..0
- Grades
- A = 92-100
- B = 84-91
- C = 76-83
- D = 68-75
- E = 60-67
- Fx = 0-59
Oral Examination
To the oral examination all the above requirements must be SATISFACTORILY completed.
How to Arrange your Project
- Take 1 friend and Team up
- Role1: The Coder
- Choose a given animation algorithm
- Code up hot demo app and show it
- Present a selected research paper
- Role2: The Artist
- Choose some authoring tool and create hot physically based demo reel
- Present a selected research paper
- Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
- Projects with minimal requirements: Projects.pdf
- Teams fill the form (names and project): deadline 5.10.2015 Submit a link to created web page with project description or animation story board where you write your progress, continually.
Lesson01 "Introduction to Computer Animation"
- Introduction to Computer Animation
- Common animation techniques
- Cutting edge tools and packages
- Gurus and the State of the Art
- Lecture schedule
- "Terms and conditions" of this lecture
- Lecture notes: lesson01.pdf
Lesson02 "Basic methods in Computer Animation"
- Problem definition and motivations
- Key-framing and parameter interpolation
- Quternions, orientation
- Skeleton and skinning animation
- Forward and inverse kinematics
- Procedural techniques
- (Motion capture)
- Lecture notes: lesson02.pdf
- Štátnicová téma: S1 Animácie pohybu a orientácie, interpolačný spline na animáciu pohybu, splinu podľa dĺžky krivky, quaternion a orientácia, interpolácie dvoch a viacerých quaternionov.
Lesson03 "Particle Systems"
- Newton dynamics of particles
- Ordinary differential equation (ODE) solver
- Particle - obstacle collision detection
- Practical design of particle system
- Demos / tools / libs
- Lecture notes: lesson03.pdf
- Štátnicová téma: S2 Numerické riešenie diferenciálnych rovníc, Eulerova metóda, MidPoint metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku, sily odozvy (response forces).
Lesson04 "Soft bodies, Cloths and hair”
- Problem definition and motivations
- Modeling solids with stress and strain
- Extending Mass-spring model for cloth and ropes
- Massive (self) collision and resolution for cloths
- Mesh-less deformations
- Modeling solids with infinitely stiff springs
- Demos / tools / libs
- Lecture notes: lesson04.pdf
- Štátnicová téma (Lesson 3,4): S3 Časticové systémy, rovnice pohybu prvého rádu, integračné metódy na výpočet rýchlosti a pozície, stavový vektor systému, vonkajšie sily, obmedzujúce podmienky – constraints, sily odozvy, kolízie častica - rovina.
Lesson05 "Broad Phase Collision Detection"
- Problem definition and motivations
- Hierarchical grids and spatial hashing
- Sweep and prune and radix sort
- Pair management – a practical guide
- Demos / tools / libs
- Lecture notes: lesson05.pdf
Lesson "All Saints' Day (no lesson)"
- No lesson
Lesson06 "Mid Phase Collision Detection"
- Problem definition and motivations
- Generic Bounding Volume Hierarchy (BVH)
- Tandem BVH traversal
- Proximity evaluation of primitive geometries
- External Voronoi regions
- Sphere x Capsule x Box x triangle collisions
- Approximate convex decomposition
- Lecture notes: lesson06.pdf
Lesson07 "Narrow Phase Collision Detection"
- Problem definition and motivations
- Proximity queries for convex objects (Minkowski space)
- GJK based algorithms (GJK, EPA, ISA-GJK)
- Voronoi-Clip (V-Clip) Algorithm
- Signed Distance Maps for collision detection
- Demos / tools / libs
- Lecture notes: lesson07.pdf
- Štátnicová téma (Lesson 5,6,7): S4 Detekcie kolízie, nutná a postačujúca podmienka kedy nie sú dve telesá v rovina, broad phase (hierachycká mriežka), mid phase (hierarchie obálok, Voronoiove oblasti v kolízii, vysvetlujte na príklade kolízie gula x kapsula, dekompozícia telesa na konvexné časti), narrow phase (Minkowskeho priestor a blízkosť konvexných telies).
Lesson08 "Rigid body Dynamics”
- Problem definition and motivations
- Dynamics of rigid bodies
- The equation of unconstrained motion (ODE)
- User and time control
- Mass properties of polyhedral objects
- Demos / tools / libs
- Lecture notes: lesson08.pdf
- Štátnicová téma (Lesson 9): S5 Dynamika tuhých telies, definícia problému, rovnice pohybu (4 ODE), rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica hybnosti (matica inercie).
Lesson09 "Rigid body Collisions and Joints”
- Problem definition and motivations
- Simplified collision model
- Impulse based collision equation
- Friction-less collision resolution
- Algebraic collision resolution for Coulomb friction
- Linear and angular joint formulations
- Demos / tools / libs
- Lecture notes:lesson09.pdf
Lesson10 "Fluid, Fire and Smoke”
- Problem definition and motivations
- Navier-Stokes equations for fluid dynamics
- Grid based MAC method
- Particle based SPH method
- Neighbor search for coupled particles
- Modeling smoke and fire with fluid
- Demos / tools / libs
- Lecture notes: lesson10.pdf
Lesson11 "Final term"
- Don't panic - just few simple questions
Lesson12 "Animation Show"
- Show your animation to your colleagues
EXCERCISES
- Your presence at the seminar is optional.
- On every seminar we will focus on the selected problems from lessons. We will use the numerical methods to solve specific problems.
Excercise01 "Key Framing”
- Blender demo
- Blender https://www.blender.org/
Excercise02 "Quaternion Interpolation”
- Assigment
- Blender tutorial for skeleton modelling
Excercise03 "Differential Equations”
- Analitical solution of ODE
- Runge-Kuta method
- Assigment
- uloha2.pdf (deadline 22.10.)
- resources:
- Wolfram Mathematica http://mathworld.wolfram.com/
- FreeMat http://freemat.sourceforge.net/index.html
- Matlab tutorial http://www.tutorialspoint.com/matlab/index.htm
Excercise04 "Nadpis”
RESOURCES
- Roman Ďurikovič, Vladimír Ďurikovič. Numerical Mathematics for Computer Science (in Slovak Numerická matematika pre informatika, Riešené príklady v programe MATHEMATICA). ISBN 978-80-8105-271-2, University of Saint Cyril and Metod Press, Trnava, Slovakia, pages 162, 2011. https://www.researchgate.net/publication/256681458_Numerick_matematika_pre_informatika_Rieen_prklady_v_programe_MATHEMATICA