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Lesson 0?2 Outline

* Problem definition and motivations
* Simplified collision model

* [mpulse based collision resolution
> Friction-less collision resolution
> Algebraic collision resolution for Coulomb friction

* Linear and angular joint formulations

* Demos / tools / libs
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Contact Types

* Bodies either collide, rest or separate depending
on their relative velocity of contact points
> Assuming No rotational motion all 3 collision scenarios are:

Colliding Contact Resting Contact Separating contact

Av_< 0 Av_ =0 Av_> 0



Simplified collision model

* Perfect rigidity

> Bodies are perfectly rigid. There are no plastic or elastic
deformations, where kinetic energy is dissipated. Thus our
impact models must artificially decrease the kinetic energy

*Very short collision interval

> We model highly elastic behavior, making the collision
interval At very short requiring the repulsive forces to be
very strong, to maintain the non-penetration constraint.

* Direct velocity change

> We need to integrate response forces during the collision
interval into impulses and change objects velocities directly,
causing discontinuities of motion.



Simplified collision model

* Non-impulsive forces are ignored

> We can neglect all non-impulsive forces (e.g. gravity),
because they are too small compared to the impulsive
forces and have no time to accumulate during collision

* Point contact

> We reduce the contact region to a set of point contacts
treated either as a sequence of single collisions or as a
simultaneous multiple impact similar to resting contact

* Constant state

> We assume position, orientation, inertia tensor, contact
point and contact normal constant, since their change
during the collision is negligible. Velocities change strongly



ISION

ulse based Colli



Collision Resolution

* Rigid body collision resolution is described as
Collision Laws composed of

* [mpact Model

> Describes rules which preserve the non-penetration
constraints of colliding bodies

* Friction Model - is responsible for creating
frictional effects as
> Sticking — bodies rest on each other due to friction forces
> Rolling — bodies start to roll due to friction forces
> Sliding - bodies slow down sliding due to friction forces



Collision Resolution Strategies

* Algebraic Collision Resolution

> Final velocities (impulse) are calculated using only algebraic
relations between pre and post collision variables
(velocities, energies... ). No numerical ODE solvers — fast

* [ncremental Collision Resolution

> Evolution of the impulsive forces are described with some
(ordinary) differential equation with initial and final
conditions formed for compression and restitution phases.

* Full Deformation Collision Resolution

> Most accurate collision laws accounting with subtle stress
and strain processes during the impact. Usually solved using
finite element methods. Slow, not suitable for real-time apps.



Impact Model

* N real world objects are never perfectly rigid.
> First, their shape is compressed.
> If they are elastic their shape is then restituted.
> [f they are plastic their shape is then plasticlly deformed.

* Impact model as a part of some collision law

> Determines the post-collision velocities (positions,
orientations... ) which prevent bodies to penetrate.

> Models as realistic as possible the process during the
compression and restitution.

* Time of maximum compression (t )

> Time when compression ends and restitution starts.
> Time when repulsive forces have maximal length



Impact Model

Ja(t)

Jn(t)

8 compression i restitution i



Newton’s Impact Model

* Newton’s Impact Model states simple algebraic
linear relation between
> Pre-collision relative normal velocity u_(t)
(

> Post-collision relative normal velocity u_(t)

n

> Based on coefficient of restitution ¢_
»Formally: u_(t) =-e u (t) = n'uft) =-e Nu(t,)

* Main drawbacks

> it “blindly” finds some impulse, which cancels the relative
velocity, but have no idea about restitution force
accumulation during the compression and restitution phase

> Can add kinetic energy during collision.



Other Impact Models

* Poisson’s Impact Model
> Total impulse applied during compression j_(t ) is proportional
to the impulse applied during restitution j (t1) —j (t )
>Formally: j (t) = j (t ) =¢j (t )
> In friction-less case it is equal to Newton's model

* Stronge’s Impact Model

> Directly relates the work of repulsive forces during
compression W_(t ) and restitution W _(t) - W _(t )

>Formally: W_(t) -W _(t ) =-e2 W _(t )
> Kinetic energy can not be increased
» Coefficient of normal restitution ¢_is a property of material.



Coulomb Friction Moodel

* [N the real-world, microscopic interaction between
colliding surfaces exerts frictional forces.

> This process depends on many different factors, as
microscopic structure of the surfaces, relative velocity,
contact geometry, and other material properties.

* Assume f is the repulsive force between bodies
acting on contact point p and U is relative velocity

*Both f and u can be split into
> Normal components (f , u ) parallel to contact normal

> Tangential components (f,, u) being inside contact plane

*»f=f +f andu=u +u
n t n t



Coulomb Friction Model

* Coulomb Friction Law

> Friction force has opposite direction to relative tangential
velocity and is proportional to normal repulsive force.

> [f the relative tangential velocity vanishes (is zero), we know
only that the length of frictional component is less than
times to the normal component.

> U is the coefficient of friction and depends only on material

+Sliding: u, 1=0 — f = plf |u/ |u| = |f] =plf
» Sticking: u,==0 — |f | < u|f |

»In both cases |f,(t) | < u|f (t)| thus for any
direction friction force must lie in the friction cone



Coulomb Friction Moodel

* Similar relation |j,| < u|j | holds for impulses
> | = [FF NON] < [T I F (A) [OA < pf* g [ £, (A) [ON = ] |
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[mpulse base Collision Scenario

* Collision Frame
> Origin is the contact point
> / axis is the contact normal

* Relative velocity u on contact  Colision frame
pointis: U=uU - U, 4 '

* Local body positions of Wi
contact pointare: randr, g, -

* Velocities are changed during
collision due to applying
collision impulses (+j) and (-j) ]
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Collision Impulse

* Collision Impulse j is the time integral of the
repulsive force f over the collision interval (t,, t)

> = j(t) = [t_f(N)OA

* We define a delta operator “A” which for a given
function "Q" calculates the integral of its time
derivative Q' (= dQ/dt) over collision interval (t,, t)

> A(Q) = [{ Q'(N)SA = Qft) - Qft)

* Due to Newton’s Third (action-reaction) Law
during the collision there are finite (out huge)
repulsive forces which together with the opposite
reactive forces are pushing bodies apart



Collision Impulse

* Suppose some repulsive force +f (-f) pushes first
(second) body at contact point p

* We can express f using Newton-Euler equation
(+f) =P = M,v))’ r.x (+f) =L’ = (Jw)’
(-f) =P, =M, Vv,)’ it =L, = {(Jw)

* Using the “A” operator we can express impulse |
(+)) = AP, =M, Av, S Al Aw
(-j) = AP, =M, Av, r,x (-j) = AL, = J, Aw,



Collision Impulse

* The velocity change due to applying an impulse is
AV] i M]_] (+J) A(D] i J]_] (r] X (+J))
AVoS Mz-] (-)) Aw, = Jg_] (rg SR

= [f we express current velocities u, u, and their
"change” Au, Au, at the contact point p(t)

U=V +wXxr, Au]=Av]+Aw]xr]

u,=v,+w, Xxr, Au2=Av2+AoL>2xr2



Collision Impulse

* The final "change” of velocities after the collision
> Au =M (+)) +J7(r x (+)) xr = ... = (MTT+rxd7r ) (+)) =K (+])

{17 S

s AU =M () # 9 (% () Xy = = (M1 120020 () =K )

2411 2

* Final impulse-based collision equation is
*Au=Au -Au, =K (+)) -K (-)) = (K +K)j =K j(t)
> K, and K, are “Collision Matrices” of body 1and 2

> K is “Relative Collision Matrix” - symmetric positive definite
* [mpulse-momentum equation is thus
»j=K'Au = K (u(t)-u(t,))

*Uu(t) =u(t0) +K j(t)



Friction-less Collision Resolution

* Using Newton's impact model collision impulse is
>Kj=Au=u(t) -uft) ond j=|j[J.
>nK|jlj. = nu(t) - nu(t,) = -e Nu(t) - Nlu(t) =-(1+¢ )n'u(t)
> [j] =-(+e)nult) / nKj.

> j_is unit direction vector of impulse (parallel with impulse)

* Collision impulse is related to pre-collision velocity

> [n friction-less case repulsive forces acts only in the normal
direction (to stop penetration), thus impulse is parallel to
contact normal: j_(t) =n

v )(6) = [0 SR ST
N Kn




Collision Resolution with Friction

* Considering friction we don’t know the direction
of the impulse.

* Any collision impulse must be admissible

> [t must preserve non-penetration, satisfy the friction cone
condition and dissipate energy

*Friction cone Test

> J(t) = R ame R L) = nTj(t)n

> [J{t) -nGE)n] = [t [ <pljt) | =n(t)
*test(j) = [j-n"jn| - nj(t)

> [f test(j) < 0 — impulse is in friction cone

> [f test(j) > 0 — impulse is not in friction cone



Algebraic Resolution Law |

* Given some positive real c and any vectors A, B we
define “projection” function “kappa” as

cun'A
IB—n'Bn|+un'(B—A]

kappa(c,A,B) =

* We define impulses P, P, and P

T T
> Plastic Slldlng P, i _<]+E,,T)n U<to)n i —nTUu’o)n
n Kn n Kn
> Plastic sticking L) Ul = K ()
> Predicted impulse P = (1+€,)P,+(1+€,}{P,—P,]
*Final impulse is
(1+¢€,) test (P)<0

= P + P _P —
j ( er,) I K( i 1) K kopp0(1+€n’P1’P1!) test(P)>O
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Linear and Angular Joints

* 3 basic types of Linear joints
> 0,1,2,3 DOF for relative linear motion
> Angular motion is unconstrained (= 3 angular DOF)

* 3 basic types of Angular joints
> 0,1,2,3 DOF for relative angular motion
> Linear motion is unconstrained (= 3 linear DOF)

* Any 0-6 DOF joint constraint can be constructed as
a combination of one linear and one angular joint
> Ball Joint =0 linear and 3 angular DOF (= 3 DOF)
> Hinge Joint =0 linear and 1 angular DOF (= 1DOF)
> Point on Plane Joint = 2 linear and 3 angular DOF (= 5 DOF)
> Other joints ...



O-DOF Linear Joint

* (0 linear DOF = Relative linear motion of bodies is
fully constrained at some joint point p
> Let p, and p, be on bodies A and B where the joint is applied.

= To satisfy this joint, distance between p, and p,
should be zero (within tolerance): |p, -p,| =0

» Suppose at t the joint is satisfied. After At of free motion
distance d = p, - p, can become non-zero.

> Simplifying the relative motion of p, and p, is linear their
relative velocity is simply Au = d / At

* From Impulse-momentum equation
* j=KTAu =K (d / At)




1-DOF Linear Joint

* ] linear DOF = Relative linear motion of bodies is
allowed along some line defined in one body
> Letl, = (c,, a,) be the allowed line on A and p, joint point on B

= To satisfy this joint distance between |, and p,
should be zero: d{l,, p,) =0

* Similarly to previous joint we find the distance
vector d between |, and p, and compute impulse

* j=KTAu =K' (d / At)



2-DOF Linear Joint

* 2 linear DOF = Relative linear motion of bodies is
allowed along some plane defined in one body
> Let B, = (c,, n,) be the allowed plane on A; p, joint point on B

= To satisfy this joint distance between B, and p,
should be zero: d(B,, p,) — 0

* Similarly to previous joint we find the distance
vector d between 8, and p, and compute impulse

* j=KTAu =K' (d / At)



3-DOF Linear Joint

* 3 linear DOF = Relative linear motion of bodies is
unconstrained.

* We do not need to apply any impulse here

> Assuming 3 angular DOF, the proposed joint has all DOF —
Both relative linear and angular motion of bodies is
unconstrained — there is Nno constraint at all. Bodies can
freely move.



0-DOF Angular Joint

* 0 angular DOF = Relative angular motion of bodies
is fully constrained
> Let g,, and q,, be initial orientation of A and B

> Relative orientation of Aand B is Aq = (9',,q.)"(9",,9,)

> Aqg is converted into axis-angle notation (o, o)

* To satisfy this joint relative orientation Aq should
be zero: Ag—0

> [f relative angular motion is linearized relative angular
velocity w = (w, - w,) is proportional to the angle a along

direction a during At: w = a.a / At

» Angular momentum changeis: AL = (J* + J' ) w

> Change angular momentums: L, += +AL and L, +=-AL



1-DOF Angular Joint

* 1 angular DOF = Bodies are allowed to rotate
around one common axis (defined in both bodies)
> Let a, and g, be the common unit axis in body A and B

> Define the relative angular axis change as d = a, x a,

> Angular velocity change is proportional to d

* To satisfy this joint relative orientation change o
should be zero: d — 0
> Similarly to previous joint relative angular velocity w = d / At

» Angular momentum change is: AL = (J' + J')'w

> Change angular momentums: L, += +AL and L +=-AL



2-DOF Angular Joint

* 2 angular DOF = Bodies are allowed to rotate
around two linearly independent axes.
> Let a, and b, be unit rotation axes in body A and B

> Define rotation change axisas c =a, x b,

> Angle ¢(t) = arccos(a, (t) , b, (t)) between a, and b, must be
constant during simulation
> Relative orientation change is d(t) = (¢(t) - ¢(0)) ¢

* To satisfy this joint relative orientation change o
should be zero: d —= 0
> Similarly to previous joint, relative angular velocity w = d / At

» Angular momentum changeis: AL = (J* + J' ) w

> Change angular momentums: L, += +AL and L +=-AL



3-DOF Angular Joint

* 3 angular DOF = Relative angular motion of bodies
is unconstrained.

* We do not need to change angular momentum

> Assuming 3 linear DOF, the proposed joint has all DOF — Both
relative linear and angular motion of bodies is
unconstrained — there is Nno constraint at all. Bodies can
freely move.






