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Problem Description

Why classical logics (like propositional or first-order logic) fail to
model human reasoning?
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Problem Description

Birds usually fly. Penguins are birds. They can not fly (neither birds
with a broken wing, ...). Skippy is a bird. Tweety is a penguin.
Does Skippy fly? Does Tweety fly?

First-order theory T :

(∀x)(bird(x) ∧ ¬penguin(x) ∧ · · · → fly(x))
(∀x)(penguin(x)→ bird(x))

bird(Skippy)
penguin(Tweety)

Query:

T |= fly(Skippy)?
T |= fly(Tweety)?
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Problem Description

T 6|= fly(Skippy)
T ∪ {¬penguin(Skippy), . . . } |= fly(Skippy)

Although human knowledge is usually incomplete, we are still able
to infer reasonable conclusions.
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Solution Proposal

We introduce new type of negation: negation as failure.

A formula ∼ penguin(Skippy) is true (resp. penguin(Skippy) is
false) if we fail to prove penguin(Skippy).

There is difference between
having an evidence for the classically negated atom
¬penguin(Skippy)
missing an evidence for the atom penguin(Skippy)

In the case of an incomplete information, the classical negation
¬penguin(Skippy) is not inferred but the negation as failure
∼ penguin(Skippy) is.
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Solution Proposal

Birds usually fly. Penguins are birds. They can not fly (neither birds
with a broken wing, ...). Skippy is a bird. Tweety is a penguin.
Does Skippy fly? Does Tweety fly?

Logic program P :

fly(x)← bird(x),∼ penguin(x), . . .
bird(x)← penguin(x)

bird(Skippy)←
penguin(Tweety)←

Query:

P |= fly(Skippy)?
P |= fly(Tweety)?
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Outline

1 We define the syntax and semantics of logic programs.
2 We show how backward chaining can be used for query

answering in PROLOG.
3 We show how forward chaining can be used for computing

stable models in Answer Set Programming.
4 We compare both approaches.
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Syntax

Definition (Literal)

A literal is an atom or an atom preceded by negation ∼.

Definition (Clause)

A clause is a disjunction of literals.

Definition (Rule)

A rule is a formula of the form

A0 ← A1, . . . ,Am,∼Am+1, . . . ,∼An

where 0 ≤ m ≤ n and each Ai , 0 ≤ i ≤ n, is an atom.

Definition (Program)

A logic program is a set of rules.
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Rules

Each rule
A0 ← A1, . . . ,Am,∼Am+1, . . . ,An

can be viewed as an implication

A1 ∧ · · · ∧ Am ∧ ∼Am+1 ∧ · · · ∧ ∼An → A0

and equivalently as a clause

∼A1 ∨ · · · ∨ ∼Am ∨ Am+1 ∨ · · · ∨ An ∨ A0

A fact is a rule of the form

A←

A constraint is a rule of the form

← A1, . . . ,Am,∼Am+1, . . . ,∼An
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Example

Consider the following logic program P :

p(X ,Y )← e(X ,Y )

p(X ,Y )← e(X ,Z ), p(Z ,Y )

e(a, b)←
e(b, c)←

and the atom A = p(a, c).

What is the meaning of the logic program P?
What we need to do to check if P |= A?
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Herbrand Interpretation

Definition (Herbrand Universe)

A term is ground if it does not contain variables.
The Herbrand universe is the set U of all ground terms.

Definition (Herbrand Base)

An atom is ground if it does not contain variables.
The Herbrand base is the set B of all ground atoms.

Definition (Herbrand Interpretation)

A Herbrand interpretation is an interpretation I = (U , I ) such that

f I = (t1, . . . , tn) 7→ f (t1, . . . , tn)

for each function symbol f with arity n.
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Properties

Theorem
A logic program is satisfiable iff it has a Herbrand model.

Sketch of proof.
Each Herbrand model is a model, i.e. if a logic program has
a Herbrand model, it has a model.
If I = (D, I ) is a model of P then a Herbrand interpretation
J = (U , J) such that

J(p) = {(t1, . . . , tn) | I |= p(t1, . . . , tn)}

is a Herbrand model of P .
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Properties

The previous theorem holds only for clauses, it does not hold for
arbitrary closed formulas.

Let S be {p(a), (∃X )¬p(X )}. The Herbrand universe is U = {a}
and the Herbrand base is B = {p(a)}. We have two Herbrand
interpretations, ({a}, I1), pI1 = ∅ (i.e. p(a) is false), and ({a}, I2),
pI2 = {(a)} (i.e. p(a) is true). In both cases, S is not satisfied.

But if we take the domain D = {0, 1} and the interpretation
function I3 with aI3 = 0, pI3 = {(0)}, then (D, I3) is a model of S .
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Definite Logic Program

Definition (Definite Rule)

A definite rule is a rule of the form

A0 ← A1, . . . ,An

where 0 ≤ n and each Ai , 0 ≤ i ≤ n, is an atom.

Definition (Definite Logic Program)

A logic program is definite if it contains only definite rules.
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The Least Herbrand Model

Lemma
Let P be a definite logic program andM be a non-empty set of
Herbrand models of P . Then

⋂
M∈MM is a Herbrand model of P .

Theorem
Every definite logic program P has the least Herbrand model
(denoted MP).

Proof.
The set of all Herbrand models is non-empty, because the Herbrand
base B is a model of P . The intersection of all Herbrand models is
the least Herbrand model of P .
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The Least Herbrand Model

Theorem
Let P be a definite logic program. Then MP = {A ∈ BP | P |= A}.

Proof.
P |= A iff P ∪ {∼A} is unsatisfiable iff P ∪ {∼A} has no Herbrand
models iff ∼A is false w.r.t. all Herbrand models of P iff A is true
w.r.t. all Herbrand models of P iff A ∈ MP .
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Immediate Consequence Operator

Definition (Immediate Consequence Operator)

Let P be a definite logic program. An immediate consequence
operator TP is defined as follows:

TP(I ) = {A ∈ BP | A← A1, . . . ,An ∈ Ground(P),
{A1, . . . ,Am} ⊆ I}

The iteration TP ↑ n is defined as follows:

TP ↑ 0 = ∅
TP ↑ (n + 1) = TP(TP ↑ n)

TP ↑ ω =
⋃
n<ω

TP ↑ n

Theorem
Let MP be the least model of P . Then MP = TP ↑ ω.
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Normal Logic Program

Definition (Normal Rule)

A normal rule is a rule of the form

A← L1, . . . , Ln

where 0 ≤ n, A is an atom, and each Li , 1 ≤ i ≤ n, is a literal.

Definition (Normal Logic Program)

A logic program is normal if it contains only normal rules.
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Reasoning with Negation

student(joe) ←
student(bill) ←

P |= student(jim)?

P |= ∼ student(jim)?

student(x)↔ x = joe ∨ x = bill
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Completion

First step:

p(x1, . . . , xm)← x1 = t1 ∧ · · · ∧ xm = tm ∧ L1 ∧ · · · ∧ Ln

where x1, . . . , xm are variables not occuring in L1, . . . , Ln and
p(t1, . . . , tm)← L1, . . . , Ln is a normal rule.

Second step:
p(x1, . . . , xm)↔ E1 ∨ · · · ∨ Ek

where each Ei has the form x1 = t1 ∧ · · · ∧ xm = tm ∧ L1 ∧ · · · ∧ Ln,
E1, . . .Ek are all transformed rules from the first step with the
predicate symbol p in the head, and x1, . . . , xm are new variables.
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