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Basic Reasoning Tasks

C is satis�able if there is an interpretation I such that CI 6= ∅

C is subsumed by D if CI ⊆ DI in every interpretation I
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Reasoning Tasks for T

C is satis�able w.r.t. T if there is a model I of T such that CI 6= ∅

T entails C v D if CI ⊆ DI in every model I of T
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Reasoning Tasks for T and A

C is satis�able w.r.t. 〈T ,A〉 if there is a model I of 〈T ,A〉 such
that CI 6= ∅

〈T ,A〉 entails C v D if CI ⊆ DI in every model I of 〈T ,A〉
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Reasoning Tasks for T and A

C is satis�able w.r.t. 〈T ,A〉 if there is a model I of 〈T ,A〉 such
that CI 6= ∅

〈T ,A〉 entails C v D if CI ⊆ DI in every model I of 〈T ,A〉

A is consistent w.r.t. T if if there is a model I of 〈T ,A〉
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Reductions

Theorem:

1 C is satis�able i� C 6v ⊥
2 C v D i� C u ¬D is unsatis�able

3 C is satis�able w.r.t. 〈T ,A〉 i� A ∪ {C (a)} is consistent w.r.t.
T for some new constant a
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Finite Tree Model Property

Theorem. If C is satis�able then it is satis�able by some

interpretation I that is a �nite tree
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Negation Normal Form

C is in NNF if ¬ only occurs in front of atomic concept symbols

inside C

Lemma. For every concept C there exists C ′ in NNF such that

C ≡ C ′

¬(E u F ) ≡ ¬E t ¬F
¬(E t F ) ≡ ¬E u ¬F
¬∃R.E ≡ ∀R.¬E
¬∀R.E ≡ ∃R.¬E
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Negation Normal Form

C is in NNF if ¬ only occurs in front of atomic concept symbols

inside C

Lemma. For every concept C there exists C ′ in NNF such that

C ≡ C ′

Proof: (Sketch)

¬(E u F ) ≡ ¬E t ¬F
¬(E t F ) ≡ ¬E u ¬F
¬∃R.E ≡ ∀R.¬E
¬∀R.E ≡ ∃R.¬E
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Completion Tree

Completion tree (CTree) is a triple T = 〈V ,E ,L〉 such that 〈V ,E 〉
is a tree and L is a labeling function such that

L(x) is a set of concepts for all x ∈ V

L(〈x , y〉) is a set of roles for all 〈x , y〉 ∈ E
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Completion Tree

Completion tree (CTree) is a triple T = 〈V ,E ,L〉 such that 〈V ,E 〉
is a tree and L is a labeling function such that

L(x) is a set of concepts for all x ∈ V

L(〈x , y〉) is a set of roles for all 〈x , y〉 ∈ E

y ∈ V is an R-successor of x ∈ V if 〈x , y〉 ∈ E and R ∈ L(〈x , y〉)
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Clash

There is a clash in a CTree T = 〈V ,E ,L〉 if for some x ∈ V and

for some concept C both C ∈ L(x) and ¬C ∈ L(x).
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Clash

There is a clash in a CTree T = 〈V ,E ,L〉 if for some x ∈ V and

for some concept C both C ∈ L(x) and ¬C ∈ L(x).

Otherwise T is clash-free
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Deciding Satis�ability of Concepts

Is C satis�able?

Input: concept C in NNF

Output: answers if C is satis�able or not

Algorithm:

1 Initialize a new CTree T = 〈{s0}, ∅, {s0 7→ {C}}〉;
2 Apply completion rules (next slide) while at least one rule is

applicable;

3 If no rule is applicable, answer �Yes� if T is clash-free.

Otherwise answer �No�.
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Tableaux Expansion Rules

u-rule: if C1 u C2 ∈ L(x), x ∈ V and {C1,C2} * L(x)
then L(x) := L(x) ∪ {C1,C2}

t-rule: if C1 t C2 ∈ L(x), x ∈ V and {C1,C2} ∩ L(X ) = ∅
then either L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}

∀-rule: if ∀R.C ∈ L(x), x , y ∈ V , y R-successor of x , C /∈ L(y)
then L(y) := L(y) ∪ {C}

∃-rule: if ∃R.C ∈ L(x), x ∈ V with no R-successor y s.t. C ∈ L(y)
then V := V ∪ {z}, L(z) := {C} and L(〈x , z〉) := {R}
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Correctness of the Tableaux Algorithm

Theorem. The tableaux algorithm for deciding satis�ability of

concepts always terminates and it is sound and complete.

Martin Homola Computational Logic



Correctness of the Tableaux Algorithm

Theorem. The tableaux algorithm for deciding satis�ability of

concepts always terminates and it is sound and complete.

Proof: See:

Description Logics Handbook. Baader, F., et al., Cambridge

University Press, 2003

Semantic Investigations in Distributed Ontologies. Homola,

M., PhD. thesis, Comenius University, 2010
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Reasoning with TBox

Lemma. C v D i� > v ¬C t D
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Reasoning with TBox

Lemma. C v D i� > v ¬C t D

Idea:

If C v D ∈ T then ¬C t D must be true for every x ∈ ∆

Add ¬C t D to L(x) for every x ∈ V
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Reasoning with TBox

Lemma. C v D i� > v ¬C t D

Idea:

If C v D ∈ T then ¬C t D must be true for every x ∈ ∆

Add ¬C t D to L(x) for every x ∈ V
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Reasoning with TBox

Lemma. C v D i� > v ¬C t D

Idea:

If C v D ∈ T then ¬C t D must be true for every x ∈ ∆

Add ¬C t D to L(x) for every x ∈ V

T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)
then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Homola Computational Logic



Problem with Termination

Let T = {C v ∃R.C}
Is C satis�able?
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Blocking

x ∈ V is blocked if it has an ancestor y such that

either L(x) ⊆ L(y)

or y is blocked
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Tableaux Expansion Rules with Blocking

u-rule: if C1 u C2 ∈ L(x), x ∈ V and {C1,C2} * L(x)
and x is not blocked

then L(x) := L(x) ∪ {C1,C2}
t-rule: if C1 t C2 ∈ L(x), x ∈ V and {C1,C2} ∩ L(X ) = ∅

and x is not blocked

then either L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}
∀-rule: if ∀R.C ∈ L(x), x , y ∈ V , y R-successor of x , C /∈ L(y)

and x is not blocked

then L(y) := L(y) ∪ {C}
∃-rule: if ∃R.C ∈ L(x), x ∈ V with no R-successor y s.t. C ∈ L(y)

and x is not blocked

then V := V ∪ {z}, L(z) := {C} and L(〈x , z〉) := {R}
T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)

and x is not blocked

then L(x) := L(x) ∪ {nnf(¬C1 t C2)}
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Correctness of the Tableaux Algorithm with TBoxes

Theorem. The tableaux algorithm for deciding satis�ability of

concepts w.r.t. a TBox always terminates and it is sound and

complete.
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Reasoning with TBox and ABox

Is C satis�able w.r.t. 〈T ,A〉?

Change initialization:

V := {a | constant a occurs in A} ∪ {s0}
E := {〈a, b〉 | R(a, b) ∈ A for some role R}
L(s0) := {C}
L(a) := {nnf(C ) | C (a) ∈ A} for all a ∈ V

L(〈a, b〉) := {R | R(a, b) ∈ A} for all 〈a, b〉 ∈ E
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Correctness of the Tableaux Algorithm with TBox and ABox

Theorem. The tableaux algorithm for deciding satis�ability of

concepts w.r.t. TBox and ABox always terminates and it is sound

and complete.
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