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Overview

B Realistic cloth simulation

B Implicit integration method instead of explicit
integration method

B Conjugate gradient method for solving sparse
linear systems

B Enforcing constraints
® | arge time steps instead of small ones
® Simulation system significantly faster



Introduction

B Physically-based cloth simulation formulated as a
time-varying partial differential equation

X=M" (—% - F)
B Faster performance — choosing implicit
integration method

® Cloth resists stretching motions, but not
shearing and bending

B Computational costs of explicit methods limits
realizable resolution of cloth



Introduction

Previous approaches

B Terzopoulos: cloth as rectangular mesh, implicit
scheme, not very good damping forces

® Carignan: rectangular mesh, explicit integration
scheme

® \olino: triangular mesh, collision detection, no
damping forces, midpoint method



Introduction

B Cloth - triangular mesh; eliminates topological
restrictions of rectangular meshes

B Deformation energies — quadratic, not quartic
functions (Terzopoulos, Carignan)

B Directly imposing and mantaining constraints
® Dynamically varying time steps



Simulation overview

® Triangular mesh of n particles, x, — position of /-
th particle, x — geometric state of all particles

B The same with force f

m Rest state of cloth: each particle has an
unchanging coordinates (u,v) in plane

® 3 internal forces (stretch, shear, bend), 3
damping forces, additional forces



Simulation overview

B Shear force and stretch formulated on a per
triangle basis, bend force on a per edge basis

B Stretch force — high coefficient of stiffness
® Combining all forces into force vector f

m Acceleration of ~th particle: X =f/m.

B Matrix of masses M: x = M-f(x, x)

B Constraints — user defined/automatic, in 1,2 or 3
dimensions



Implicit integration

m Position x(t,) and velocity x(t,) in time t,

B Goal: determine new position and velocity in
time t,+h

B Define the system'’s velocity as v=X :

d (x\ d{ x\ 4
a\x )\ v ] T\ Mx, v

m change in notation x,=x(t,), v,=V(t,),
Ax=x(t,+h)-x(t,), Av=v(t,+h)-v(t,)



Implicit integration

B Implicit backward Euler’'s method:

Ax \ _ 4 Vo + AV
Av | M H(xq + AX. Vg + AV)

® Taylor series expansion to f and making first-
order approximation

of of
f(xg + AX, vg + AV) =1 + Tf_\.x + Tf_\.v
8.4 aov



Implicit integration

m Derivative df/dx is evaluated for the state (x,,Y,),
similarly for of/dv

B Substituting into equation, substituting
Ax=h(v,+ Av), considering identity matrix I:

of 1 of
(I—f?\[‘ = M : ) AV = hM™ 1(1"04—??—1{;,)
oV oxX 15).

® This is solved for Av

® Then Ax=h(v,+ Av) is computed



Forces

B Cloth’s material behavior described in terms of a
scalar potential energy function E(x)

B Force f arising from this energy: f=- dE/9dx

B Expressing energy as single function —
impractical

® Internal behavior defined by vector condition
C(x)

B Associated energy: k/2C(x)"C(x), k-stiffness
constant



Stretch force

m Every cloth particle has changing position x. in
space and unchanging coordinates (u,v) in plane

® w(u,v) — mapping function from plane
coordinates to world space

m Stretch measured by examining w,=dw/ du and
w,= dw/aVv at a point

m |w, | - stretch/compression in u direction



Stretch force

® Apply stretch/compression measure to a
triangle: (vertices=particles i,j,k)

Ay Au;)

(‘1’“ "Vp_l} - {&Xl &X:} (AU] &[H

Ax1=xj-Xi, Ax2=xk-xi, Aul=uj-ui, Au2=uk-ui, similarly for Ay1, Ay2

® Condition for a stretch energy:

||"'4r"r"”{X}|| o b..r; )

Cx)=a ( W, (X) || — by

where we treat wu and wv as functions of x; they depend only on xi,xj,xk



Shear and bend forces

m Extent to which cloth has sheared is w w,

m Condition for shearing: C(x)=aw, (x)™w,(x)

B Benc

— measured between pair of adjacent

triangles

® Bend energy depends upon 4 particles defining
two adjoining triangles
B C(x)=06

n, and n,: unit normals of the two triangles, e: unit vector parallel to
the common edge, angle 6 between two faces defined by: sin 6 = (n,xn,).e
and cos 6 =n,.n,



Damping

B Forces before — functions of position only

B Damping forces — functions of position and
velocity

® ].e — strong stretch force must be accompanied
by strong damping force (anomalous in-plane
oscillations)

® Not formulated for E(x) by measuring velocity of
the energy — nonsensical results

B Defined in terms of the condition C(x)



Damping

® Damping force d associated with a condition C:

gL {x) =

d=—ky C(x)

i

o0X

® Add damping forces to internal forces, finding
term that breaks symmetry, term omission

B Result:

ad, - 9C(x) AC(x)
— — g .

-

aC(x) aC(x)T
. S Pt :
IX;  Iv; JxX;  0X;

{.hr'r J



Constraints

® Automatically determined by user, or contact
constraints generated by system

B At given step, particle is
unconstrained/constrained in 1,2 or 3
dimensions

® 3 dimensions: explicitly setting velocity of
particle

B 2 or 1 dimension: constraining velocity along
either 2 or 1 mutually orthogonal axes



Constraints

Other enforcement mechanisms:

B Reduced coordinates — that are describing

position and velocity, complicates system (size
of matrices changes)

® Penalty method — stiff springs for preventing
illegal motion; additional stiffness needed

B | agrange multipliers — additional constraint
forces; more variables



Constraints

B Build constraints directly into equation

B Tnverse mass: M1, enforcing constraints by mass
altering

® W = modified M, W. = (1/M.)*S,

LI 1f ndof(i) =3
S — | I —p.pl) if ndof (i) =2
| d—pipf —qiqf) ifndof(i) =1
| 0 1f ndof(i) =0

ndof(i) is number of degrees of freedom particle, pi and gi — prohibited directions;
pi if ndof(i) = 2, qi if ndof(i)=1



Constraints

m For particle i, z = change in velocity we wish to
enforce in the particle’s constrained direction(s)
B Rewriting equation to directly enforce contraints

| of oo, Of of
(I — ]?‘ﬁ"ff— — h-W‘—) Av = hW (fg + f’?,_—Vg) +z
av X 8).¢

® Solving for Av, completely constrained particle:
Av.=z, partially: Av.whose component in the

constrained direction(s) = z



Implementation

B For small test systems — former equation (with
constraints) solved directly

® For larger — iterative method (conjugate
gradient)

® Problem — CG method requires symmetrical
matrices

® Transforming equation —without constraints — to
symmetric system:

of S of of
(}'I — hf— — h’f—) AV =h (f[, -+ f?f—t?ﬂ)
dv 0X 5).¢



Implementation

® Modify CG method so it can operate on equation
from former slide

® Procedurally applying the constraints inherent in the
matrix W

® Matrix A, vector b, residual vector r:

. : of
A — | M- ;,Iif _ if b=#h (fn — hf—_vﬂ) and r=AAv—b.
’ : v X o

m Component of r, in the particle’s unconstrained
direction(s) will be = 0

® Component of Av. in the particle’s constrained
direction(s) will be = z



Modified CG method

B Takes matrix A, vector b, preconditioning matrix
P and iteratively solves AAv=Db

® Termination criteria: |b-AAv| < e.|b|

B P speeds convergence (P! approximates A)

B Effect of matrix W — filter out velocity changes in
constrained direction

® Define an invariant - component of Av. in
constrained direction(s) of particle i is equal to z,



Modified CG method

B Filter — take vector a and perform filtering
operation as multiplying by W

B Method always converges -> it works

B Tried to use not modified CG method with
penalty term

B No substantial changes in number of iterations
® Similar convergence behavior



Constraint forces

® Contact constraint (cloth — solid object)

B Need to know actual force, in order to determine
when to terminate a contraint

® Frictional forces
® Computed at the end of modified CG: (AAv-b)

B Releasing constraint: constraint force between a
particle and a solid switches from repulsive force
to attractive one



Constraint forces

Friction:

B Cloth-solid object contact: particle locked onto a
surface

® Monitor constraint force

® If tangential force exceed some fraction of
normal force — sliding on the surface allowed



Collisions

B Cloth-cloth: detected by checking pairs (p,t) and
(el,e2) for intersections

B Coherency based bounding box approach

® Collision detected -> insert a strong damped
spring force to push them apart

® Friction forces for cloth contact — not solved



Collisions

B Cloth-solid object: testing each cloth particle
with faces of object

B Faces of solid object grouped into hierarchical
bounding box tree

B | eaves of tree are individual faces of object

B Creation of tree - recursive splitting along
coordinate axes



Collision and constraints

B Cloth-solid object collision: enforcing constraint

® Cloth-cloth collision: adding penalty force
(enforcing constraints expensive)

B Discrete steps of simulator -> collision between
one step and next step

® Cloth-solid object: particle can remain embedded
below surface of solid object



Collision and constraints

B Solution — altering the position of cloth particles

B Because using one-step backward Euler method
— no problem

B Simple position change — disastrous results

B | arge deformation energies in altered particle’s
neighborhood



Position alteration

® Consider particle collided with solid object
m Particle’s position in next step: Ax.=h(v,+ Av))
® Changing position after this step - particle’s

neighbors receive no advance notification of the
change in position

B Ax=h(v,+ Av) + .

m y, — arbitrary correction term



Position alteration

m y. - move a particle to a desired location during
the backward Euler step
® Modify symmetric system:

of > of of of
(\I h— —h- {—) Av =h (I};l + h—wﬂ + —1) .

A Jx ox ).

® Control over position and velocity of a
constrained particle in one step

B Cloth-cloth collision: correction term can also be
added



Adaptive time stepping

® Take sizeable steps forward, without loss of
stability

m Still times when step reduction needed (to avoid
divergence)

B Other methods — focused on simulation
accurrancy, not stability

B Stiffness — potential instability arises from strong
stretch forces



Adaptive time stepping

B Fach step — take Ax as proposed change in
cloth’s state

® Examine stretch term in every triangle in newly
proposed state

B Drastic change in stretch -> discard proposed
state, reduce time step, try again



Adaptive time stepping

B Parameter that indicates maximum allowable
step size (less or equal to 1 frame)

® Simulator reduces time steps -> 2 successes ->
try to increase time step

B Failure at larger step size ->waits for a longer
time period -> retrying to increase time step



Results

B Estimate their simulator’s performance as
function of n (number of cloth particles)

B Cloth resolution(Fig.1): 500, 900, 2602, 7359
particles

B Running times: 0.23, 0.46, 2.23, 10.3
seconds/frame

® Slightly better than O(n'->) performance
(standard CG method)



Results

figure no. vertices/no. triangles time/frame step size total frames task breakdown percentage

cloth solid | (CPUsec.) | mun/max (ms) total steps EVAL. CG C/C C/S

1 2.602/4.9442 322/640 2.23 16.5/33 75/80 257 504 183 14

2 2,602/4.9442 322/640 3.06 16.5/33 75/80 179 636 153 0.2
3 6.450/12.654 9.941/18.110 132 16.5/33 50/52 18.9 379 309 2

4 (shirt) | 6,450/12.654 9.941/18.110 14.5 2.5/20 430/748 167 299 461 22

(pants) | 8.757/17.352 9.941/18.110 38.5 0.625/20 430/1214 164 357 425 1.7

5 (skart) | 2.153/4,020 7.630/14.008 3.68 5/20 393/715 181 300 445 1.5

(blouse) | 5.108/10.,016 7.630/14.008 16.7 5/20 393/701 11.2 260 577 13

6 (skirt) | 4.530/8.844  7.630/14.008 10.2 10/20 393/670 201 368 297 26

(blouse) | 5.188/10,194  7.630/14.008 16.6 1.25/20 393/753 13.2 309 502 14

System performance for simulations in figures 1-6. Minimum and
maximum time steps are in milliseconds of simulation time. Time/frame
indicates actual CPU time for each frame, averaged over the simulation.
Percenta%es of total running time are given for four tasks: EVAL—

formin
C/C—cloth/cloth col

t

detection

e linear s?/stem of equation (18); CG solving equation (18);
ision detection; and C/S—cloth/solid collision
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