Lecture 2: Description Logics ALCQHI2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

21 Feb 2013

4 3 5 4

 ${\cal ALCQHI}$ extends ${\cal ALC}$ with qualified number restrictions, role hierarchies, and inverse roles

Definition (ALCQHI concepts and roles)

Given three mutually disjoint sets $N_{\rm I}$ (individuals), $N_{\rm C}$ (atomic concepts) and $N_{\rm R}$ (atomic roles), the set of \mathcal{ALCQHI} -roles is:

 $N_{\mathsf{R}} \cup \{ R^- \mid R \in N_{\mathsf{R}} \}$

 \mathcal{ALCQHI} -concepts are recursively constructed as the smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid \exists R.C \mid \leq n R.C$$

where $A \in N_C$, R is an ALCQHI-role, C, D are ALCQHI-concepts, and $n \ge 0$ is an integer.

・ 同 ト ・ 三 ト ・

Definition (Interpretation)

An interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ which contains:

- a domain $\Delta^{\mathcal{I}} \neq \emptyset$;
- an interpretation function \mathcal{I} s.t.: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for all $a \in N_{\mathsf{I}}$; $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_{\mathsf{C}}$; $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $R \in N_{\mathsf{R}}$;
- and for each complex concept and role the constraints on next slide are satisfied

X	X ^I
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
$C \sqcap D$	$\mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}}$
$\exists R.C$	$\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$
≤n R.C	$\{x \in \Delta^{\mathcal{I}} \mid \#\{y \in \Delta^{\mathcal{I}} \mid \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\} \le n\}$
R ⁻	$\{\langle y, x \rangle \mid \langle x, y \rangle \in \mathcal{R}^{\mathcal{I}}\}$

< 돌 > < 돌 >

æ

$$\begin{array}{c|c} X & X^{\mathcal{I}} \\ \neg C & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ C \sqcap D & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ \exists R.C & \{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} \\ \leqslant n R.C & \{x \in \Delta^{\mathcal{I}} \mid \#\{y \in \Delta^{\mathcal{I}} \mid \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} \\ R^{-} & \{\langle y, x \rangle \mid \langle x, y \rangle \in R^{\mathcal{I}} \} \end{array}$$

In addition, we define as syntactic short-hands:

$$C \sqcup D ::= \neg (\neg C \sqcap \neg D)$$

$$\forall R.C ::= \neg \exists R.\neg C$$

$$\geqslant n+1 R.C ::= \neg \leqslant n R.C$$

$$= n R.C ::= \leqslant n R.C \sqcap \geqslant n R.C$$

$$\top ::= A \sqcup \neg A$$

$$\bot ::= A \sqcap \neg A$$

A B > A B >

э

Definition (TBox)

An ALCQHI TBox T is a finite set of GCI axioms and RIA axioms ψ of the respective forms:

 $\phi ::= C \sqsubseteq D$ $\psi ::= R \sqsubseteq S$

where C, D are concepts and R, S are roles.

A B > A B >

Definition (TBox)

An \mathcal{ALCQHI} TBox \mathcal{T} is a finite set of GCI axioms and RIA axioms ψ of the respective forms:

 $\phi ::= C \sqsubseteq D$ $\psi ::= R \sqsubseteq S$

where C, D are concepts and R, S are roles.

Definition (Satisfaction, Model)

An interpretation \mathcal{I} satisfies (\models) axioms follows:

 $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ $\mathcal{I} \models R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

 \mathcal{I} is a model of a TBox \mathcal{T} iff $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{T}$.

Definition (Decision Problems)

Given a DL TBox \mathcal{T} , some concepts C, D and some roles R, S, we say that:

- C is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$;
- R is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $R^{\mathcal{I}} \neq \emptyset$;
- C is subsumed by D w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \sqsubseteq D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- *R* is subsumed by *S* w.r.t. \mathcal{K} (denoted $\mathcal{K} \models R \sqsubseteq S$) iff $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;