
Definite Logic Program
Normal Logic Program

Lecture 5: Deductive Databases
2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

14 Mar 2013

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Outline

1 Definite Logic Program
Syntax
Model-Theoretic Semantics
Fixpoint Semantics

2 Normal Logic Program
Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Example: Logic Program without Negation

Extensional Database (EDB):

parent(X ,Y) X is a parent of Y

Intensional Database (IDB):

ancestor(X ,Y) X is an acestor of Y

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Example: Logic Program without Negation

isaac

abraham sarah

jacob

Note: p → q means q is a parent of p

parent(abraham, isaac) ←
parent(sarah, isaac) ←
parent(isaac , jacob) ←

ancestor(X ,Y) ← parent(X ,Y)
ancestor(X ,Y) ← ancestor(X ,Z), ancestor(Z ,Y)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

The Language of Logic Programs

A term is
a variable X

a function term f (t1, t2, . . . , tn) where f is a function symbol
with arity n and t1, t2, . . . , tn are terms.

An atom is a formula p(t1, t2, . . . , tn) where p is a predicate symbol
with arity n and t1, t2, . . . , tn are terms.

A literal is an atom A (positive literal) or a negated atom not A
(negative literal).

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Definite Logic Program

Definition (Definite Logic Program)

A definite logic program is a set of rules

A0 ← A1, . . . ,Am

where 0 ≤ m and each Ai , 0 ≤ i ≤ m, is an atom.

The head of a rule r is the atom head(r) = A0 and the body of
a rule r is the set of atoms body(r) = {A1, . . . ,Am}.

Rules with the empty body are called facts.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Logic Program as First-Order Theory

Each definite logic program can be viewed as a first-order theory.

Logic program P :

parent(abraham, isaac) ←
parent(sarah, isaac) ←
parent(isaac , jacob) ←

ancestor(X ,Y) ← parent(X ,Y)
ancestor(X ,Y) ← ancestor(X ,Z), ancestor(Z ,Y)

First-order theory T :

parent(abraham, isaac) parent(sarah, isaac) parent(isaac , jacob)
∀X∀Y (parent(X ,Y)⇒ ancestor(X ,Y))

∀X∀Y ∀Z (ancestor(X ,Z), ancestor(Z ,Y)⇒ ancestor(X ,Y))

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Minimal Model as Intuitive Meaning

Not all models of T are intuitive.

isaac

abraham sarah

jacob

Intuitive model

isaac

abraham sarah

jacob

Unintuitive model

Note: p → q means q is an ancestor of p

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Why Minimal Model?

Closed World Assumption
We have complete knowledge about the world
Usually there exist more negative facts then positive
Therefore we provide only positive information and what is not
known to be true is false

Open World Assumption
We don’t have complete knowledge about the world
Usually the amount of positive information is comparable with
the amount of negative information
What is not known to be true or false is unknown

In databases, we usually assume closed world.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Bottom-Up Evaluation

Definition (Immediate Consequence Operator)

Let P be a definite logic program. The immediate consequence
operator TP is defined as follows:

TP(I) = {A ∈ BP | ∃r ∈ P : head(r) = A, I |= body(r)}

The iteration of TP is defined as follows:

TP ↑ 0(I) = I

TP ↑ n + 1(I) = TP(TP ↑ n(I))
TP ↑ ω(I) =

⋃
n<ω

TP ↑ n(I)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Example: Logic Program without Negation

parent(abraham, isaac) ←
parent(sarah, isaac) ←
parent(isaac , jacob) ←

ancestor(X ,Y) ← parent(X ,Y)
ancestor(X ,Y) ← ancestor(X ,Z), ancestor(Z ,Y)

M0 = ∅
M1 = M0 ∪ {parent(abraham, isaac), parent(sarah, isaac),

parent(isaac , jacob)}
M2 = M1 ∪ {ancestor(abraham, isaac), ancestor(sarah, isaac),

ancestor(isaac , jacob)}
M3 = M2 ∪ {ancestor(abraham, jacob), ancestor(sarah, jacob)}
M4 = M3

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Syntax
Model-Theoretic Semantics
Fixpoint Semantics

Model-Theoretic Semantics vs. Fixpoint Semantics

Proposition

Let P be a definite logic program. Then {A ∈ BP | P |= A} is the
least model of P .

Proposition

Let P be a definite logic program. Then TP ↑ ω(∅) is the least
model of P .

Model-theoretic semantics and fixpoint semantics coincide.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Example: Logic Program with Negation

Extensional Database:

red(X ,Y) Red bus line runs from X to Y
green(X ,Y) Green bus line runs from X to Y

Intentional Database:

greenPath(X ,Y) You can get from X to Y
using only green busses

redMonopoly(X ,Y) Red bus line runs from X to Y ,
but you can’t get from X to Y
using only green busses

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Example: Logic Program with Negation

1 2 3

red(1, 2) ←
red(2, 3) ←

green(1, 2) ←

greenPath(X ,Y) ← green(X ,Y)
greenPath(X ,Y) ← greenPath(X ,Z), greenPath(Z ,Y)

redMonopoly(X ,Y) ← red(X ,Y), not greenPath(X ,Y)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Normal Logic Program

Definition (Normal Logic Program)

A normal logic program is a set of rules

A0 ← A1, . . . ,Am, not Am+1, . . . , not An

where 0 ≤ m ≤ n and each Ai , 0 ≤ i ≤ n, is an atom.

The head of a rule r is the atom head(r) = A0 and the body of
a rule r is the set of literals
body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}.

Rules with the empty body are called facts.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

What is the Problem with Negation?

Logic program P :

red(1, 2) ←
red(2, 3) ←

green(1, 2) ←
greenPath(X ,Y) ← green(X ,Y)
greenPath(X ,Y) ← greenPath(X ,Z), greenPath(Z ,Y)

redMonopoly(X ,Y) ← red(X ,Y), not greenPath(X ,Y)

We have two minimal models:

M1 = EDB ∪ {greenPath(1, 2), redMonopoly(2, 3)}
M2 = EDB ∪ {greenPath(1, 2), greenPath(2, 3), greenPath(1, 3)}

Only M1 is the intuitive meaning of P!

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Semi-Positive Logic Program

Definition (Semi-Positive Logic Program)

A normal logic program is semi-positive iff the only negated literals
are literals from EDB.

Extensional Database:

red(1, 2) ←
red(2, 3) ←

green(1, 2) ←

Intensional Database:

onlyRed(X ,Y) ← red(X ,Y), not green(X ,Y)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Semi-Positive Model

Semi-Positive Model:

M = TP ↑ ω(∅)

red(1, 2) ←
red(2, 3) ←

green(1, 2) ←
onlyRed(1, 2) ← red(1, 2), not green(1, 2)
onlyRed(2, 3) ← red(2, 3), not green(2, 3)

M0 = ∅
M1 = TP(M0) = M0 ∪ {red(1, 2), red(2, 3), green(1, 2)}
M2 = TP(M1) = M1 ∪ {onlyRed(2, 3)}
M3 = TP(M2) = M2

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Logic Program which is not Semi-Positive

Extensional Database:
red(1, 2) ←
red(2, 3) ←

green(1, 2) ←

Intensional Database:

greenPath(X ,Y) ← green(X ,Y)

greenPath(X ,Y) ← greenPath(X ,Z), greenPath(Z ,Y)

redMonopoly(X ,Y) ← red(X ,Y), not greenPath(X ,Y)

The logic program is not semi-positive. The atom
redMonopoly(X ,Y) depends on the literal not greenPath(X ,Y),
but greenPath(X ,Y) is not from the extensional database.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Stratified Logic Program

greenPath(X ,Y) ← green(X ,Y)
greenPath(X ,Y) ← greenPath(X ,Z), greenPath(Z ,Y)

redMonopoly(X ,Y) ← red(X ,Y), not greenPath(X ,Y)

redMonopoly red

greengreenPath
−

Dependency graph

nodes are predicate symbols
node p is connected to node q iff there is a rule which
contains an atom with predicate symbol p in the head and
a literal with predicate symbol q in the body
an arc p → q is labeled − if the literal containing q is negative

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Stratified Logic Program

greenPath(X ,Y) ← green(X ,Y)
greenPath(X ,Y) ← greenPath(X ,Z), greenPath(Z ,Y)

redMonopoly(X ,Y) ← red(X ,Y), not greenPath(X ,Y)

redMonopoly
stratum = 1

red
stratum = 0

green
stratum = 0

greenPath
stratum = 0

−

The stratum of a predicate symbol is the largest number of
negative edges on a path from that symbol.

A normal logic program is stratified if all predicte symbols have
finite strata, otherwise it is unstratified.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Stratified Model

Stratified Logic Program:

P = P0 ∪ P1 ∪ · · · ∪ Pn

Each rule in Pi has in the head a predicate symbol with the stratum
i .

Progressive Immediate Consequence Operator:

T ∗
P(I) = TP(I) ∪ I

Stratified Model:

M0 = T ∗
P0
↑ ω(∅)

M1 = T ∗
P1
↑ ω(M0)

...
Mn = T ∗

Pn
↑ ω(Mn−1)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Example

P0 =

red(1, 2) ←
red(2, 3) ←

green(1, 2) ←
greenPath(X ,Y) ← green(X ,Y)
greenPath(X ,Y) ← greenPath(X ,Z),

greenPath(Z ,Y)

P1 =

{
redMonopoly(X ,Y) ← red(X ,Y),

not greenPath(X ,Y)

}

M0 = {red(1, 2), red(2, 3), green(1, 2), greenPath(1, 2)}
M1 = {redMonopoly(2, 3)} ∪M0

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Properties of Stratified Logic Programs

Proposition
The stratified model of a normal logic program is minimal.

Proposition
A semi-positive logic program is stratified.

Proposition
Let P be a definite logic program. The stratified model of P
coincides with the least model of P .

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Unstratified Logic Program

Extensional Database:

move(1, 2) ←
move(2, 3) ←
move(1, 3) ←

Intentional Database:

win(X) ← move(X ,Y), not win(Y)

The logic program is unstratified:

win move
stratum =∞ stratum = 0

−

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Locally Stratified Logic Program

The following logic program is locally stratified:

win(1)

win(2)

win(3)

move(1, 2) move(1, 3)

move(2, 3)
stratum = 0

stratum = 0

stratum = 0stratum = 0

stratum = 2

stratum = 1

− −−

move(1, 2)←
move(2, 3)←
move(1, 3)←

win(1)← move(1, 2), not win(2)
win(2)← move(2, 3), not win(3)
win(1)← move(1, 3), not win(3)

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Locally Stratified Logic Program

Dependency graph
nodes are ground atoms
node p is connected to node q iff there exists a rule which
contains p in the head and q in the body.
an arc p → q is labeled − if q occurs negative

The stratum of a ground atom is the largest number of negative
edges on a path from that ground atom.

A normal logic program is locally stratified iff all ground atoms
have finite strata, otherwise it is locally unstratified.

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Example

P0 =

move(1, 2) ←
move(2, 3) ←
move(1, 3) ←

P1 =

{
win(2) ← move(2, 3), not win(3)

}
P2 =

{
win(1) ← move(1, 2), not win(2)
win(1) ← move(1, 3), not win(3)

}

M0 = {move(1, 2),move(2, 3),move(1, 3)}
M1 = {win(2)} ∪M0

M2 = {win(1)} ∪M1

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Properties of Locally Stratified Logic Programs

Proposition
The locally stratified model is minimal.

Proposition
A stratified logic program is locally stratified.

Proposition
Let P be a stratified normal logic program. The locally stratified
model of P coincides with the stratified model of P .

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

Definite Logic Program
Normal Logic Program

Semi-Positive Logic Program
Stratified Logic Program
Locally Stratified Logic Program

Locally Unstratified Logic Program

Extensional Database:

man(dilbert) ←

Intensional Database:

single(dilbert) ← man(dilbert), not husband(dilbert)
husband(dilbert) ← man(dilbert), not single(dilbert)

The logic program is locally unstratified:

single(dilbert) husband(dilbert)

man(dilbert)

stratum =∞ stratum =∞

stratum = 0

−

−

Martin Baláž, Martin Homola Lecture 5: Deductive Databases

	Definite Logic Program
	Syntax
	Model-Theoretic Semantics
	Fixpoint Semantics

	Normal Logic Program
	Semi-Positive Logic Program
	Stratified Logic Program
	Locally Stratified Logic Program

