
Lecture 9: Structured Argumentation Frameworks
2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

27 Nov 2012

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Example

bird(X ) ⇒ fly(X )
rooster(X ) → bird(X )
rooster(X ) ⇒ ¬ fly(X )

rooster(X ), from_circus(X ) ⇒ fly(X )
→ rooster(rocky)
→ from_circus(rocky)

fly(rocky)

rooster(rocky) from_circus(rocky)

¬fly(rocky)

rooster(rocky)

fly(rocky)

bird(rocky)

rooster(rocky)

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Argumentation Process

1 Choosing an underlaying language
2 Constructing arguments
3 Identifying conflicts among arguments
4 Comparing arguments
5 Defining the status of arguments

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Choosing an Underlaying Language

Definition (Strict and Defeasible Rule)

A strict rule is a formula of the form

L1, . . . , Ln → L0

where 0 ≤ n and each Li , 0 ≤ i ≤ n, is a classical literal.
A defeasible rule is a formula of the form

L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln ⇒ L0

where 0 ≤ m ≤ n and each Li , 0 ≤ i ≤ n, is a classical literal.

Definition (Defeasible Logic Program)

A defeasible logic program is a finite set of strict or defeasible rules.

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Constructing Arguments

Definition (Argument)

Let P be a defeasible logic program. An argument is
a default argument [L] where L is a default literal

Conc(A) = L
SubArgs(A) = {A}

a deductive argument [A1, . . . ,An → /⇒ L] if each Ai ,
1 ≤ i ≤ n, is an argument with Conc(Ai ) |= Li and
L1, . . . , Ln → /⇒ L is a rule in P

Conc(A) = L
SubArgs(A) = SubArgs(A1) ∪ · · · ∪ SubArgs(An) ∪ {A}

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Identifying Conflicts among Arguments

Definition (Rebut)

An argument A rebuts an argument B (on its subargument C ) iff C
is a deductive subargument of B and Conc(A) = ¬Conc(C ).

Definition (Undercut)

An argument A undercuts an argument B (on its subargument C )
iff C is a default subargument of B and Conc(A) = ∼Conc(C ).

A B

C

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Comparing Arguments

Preferences on rules
Strict rules preferred over defeasible rules.
Informations from more reliable source preferred over
information from less reliable source.
Newer information preferred over older information.
. . .

Preferences on arguments
Arguments containing only strict rules are preferred over
arguments containing a defeasible rule.
Specific arguments preferred over general arguments.
Arguments are compared with respect to the last defeasible
rules.
Arguments are compared with respect to all defeasible rules.
. . .

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Defining the Status of Arguments

Definition (Argumentation Theory)

An argumentation theory for a defeasible logic program P is a pair
T = (P,≺) where ≺⊆ A×A is a partial order on the set A of all
arguments of P .

Definition (Argumentation Framework)

An argumentation framework for an argumentation theory
T = (P,≺) is a pair F = (A,R) where A is the set of all
arguments of P and R ⊆ A×A is an attack relation satisfying A
attacks B iff A rebuts or undercuts B and A 6≺ B .

Now we can use any known semantics for abstract argumentation
frameworks.

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Example (Simplified)

A1 : [→ rooster(rocky)]
A2 : [→ from_circus(rocky)]
A3 : [A1 → bird(rocky)]
A4 : [A3 ⇒ fly(rocky)]
A5 : [A1 ⇒ ¬ fly(rocky)]
A6 : [A1,A2 ⇒ fly(rocky)]

A4 ≺ A5
A5 ≺ A6

A1 A2 A3 A4 A5 A6

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Reasoning with Argumentation Frameworks

For an argument A of a finite argumentation framework (A,R):
Is A contained in all extensions?
Is A attacked by all extensions?
Is A contained in an extension?
Is A attacked by an extension?

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Argumentation Game

Definition (Move)

A move is a pair µ = (P,A) where P = pl(µ) ∈ {PRO,OPP} and
A = arg(µ) is an argument.

Definition (Legal Move Function)

A legal move function is a mapping φ : A+ 7→ 2A where A+ is the
set of all finite non-empty sequences of arguments.

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Argumentation Game

Definition (Dialog)

Let φ be a legal move function. A φ-dialog is a non-empty
sequence of moves µ0, µ1, . . . where

pl(µ0) = PRO and pl(µi+1) 6= pl(µi )

arg(µi+1) ∈ φ(arg(µ0), arg(µ1), . . . , arg(µi ))

Definition (Dialog Tree)

Let φ be a legal move function. A φ-dialog tree for an argument A
is a minimal tree such that

the root is µ0 = (PRO,A)

if µ0, µ1, . . . , µi is a path, P 6= pl(µi ), and A ∈ φ(arg(µ0),
arg(µ1), . . . , arg(µi )), then µi+1 = (P,A) is a child of µi .

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Argumentation Game

Definition (Winning Dialog)

A φ-dialog d is won by PRO if d = µ0, µ1, . . . , µi is finite,
φ(arg(µ0), arg(µ1), . . . , arg(µi )) = ∅, and pl(µi ) = PRO.

Definition (Proof)

A φ-proof for an argument A is a minimal finite subtree t ′ of
φ-dialog tree t such that

the root of t is the root of t ′

if µ is a node in t ′ and pl(µ) = PRO then all children of µ in t
are also children of µ in t ′

if µ is a node in t ′ and pl(µ) = OPP then a child of µ in t
which is also a child of µ in t ′.
all maximal branches of t ′ are won by PRO

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Skeptical Complete (Grounded) Semantics

Definition (Legal Move Function ΦG )

The legal move function φG is defined as follows:
A ∈ φG (A0,A1, . . . ,A2i ) iff

A attacks A2i , i.e. (A,A2i ) ∈ R
A ∈ φG (A0,A1, . . . ,A2i+1) iff

A attacks A2i+1, i.e. (A,A2i+1) ∈ R
PRO does not repeat arguments, i.e. A2j 6= A for all 0 ≤ j ≤ i
PRO is conflict-free, i.e. {A0,A2, . . . ,A2i ,A} is conflict-free

Proposition
1 An argument A is in all complete extensions iff there exists
φG -proof for A.

2 An argument A is in the grounded extension iff there exists
φG -proof for A.

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Skeptical Complete (Grounded) Semantics

a

b

c d

e

a

b

c d

d c

e

e

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Credulous Complete (Preferred) Semantics

Definition (Legal Move Function ΦP)

The legal move function φP is defined as follows:
A ∈ φP(A0,A1, . . . ,A2i ) iff

A attacks A2i , i.e. (A,A2i ) ∈ R
OPP does not repeat arguments, i.e. A2j+1 6= A for all
0 ≤ j < i

A ∈ φP(A0,A1, . . . ,A2i+1) iff
A attacks A2i+1, i.e. (A,A2i+1) ∈ R
PRO is conflict-free, i.e. {A0,A2, . . . ,A2i ,A} is conflict-free

Proposition
1 An argument A is in a complete extension iff there exists
φP -proof for A.

2 An argument A is in a preferred extension iff there exists
φP -proof for A.

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Credulous Complete (Preferred) Semantics

a

b

c d

a

b

c d

d c

c d

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks


