Lecture 9: Structured Argumentation Frameworks 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

27 Nov 2012

Example

▲ □ ▶ ▲ □ ▶ ▲

- Choosing an underlaying language
- Onstructing arguments
- Identifying conflicts among arguments
- Omparing arguments
- Optimize the status of arguments

Definition (Strict and Defeasible Rule)

A strict rule is a formula of the form

$$L_1,\ldots,L_n\to L_0$$

where $0 \le n$ and each L_i , $0 \le i \le n$, is a classical literal. A defeasible rule is a formula of the form

$$L_1,\ldots,L_m,\sim L_{m+1},\ldots,\sim L_n\Rightarrow L_0$$

where $0 \le m \le n$ and each L_i , $0 \le i \le n$, is a classical literal.

Definition (Defeasible Logic Program)

A defeasible logic program is a finite set of strict or defeasible rules.

Definition (Argument)

Let P be a defeasible logic program. An argument is

• a default argument [L] where L is a default literal

$$Conc(A) = L$$

 $SubArgs(A) = \{A\}$

• a deductive argument $[A_1, \ldots, A_n \to / \Rightarrow L]$ if each A_i , $1 \le i \le n$, is an argument with $Conc(A_i) \models L_i$ and $L_1, \ldots, L_n \to / \Rightarrow L$ is a rule in P

$$Conc(A) = L$$

SubArgs(A) = SubArgs(A₁) $\cup \cdots \cup$ SubArgs(A_n) $\cup \{A\}$

Definition (Rebut)

An argument A rebuts an argument B (on its subargument C) iff C is a deductive subargument of B and $Conc(A) = \neg Conc(C)$.

Definition (Undercut)

An argument A undercuts an argument B (on its subargument C) iff C is a default subargument of B and $Conc(A) = \sim Conc(C)$.

Preferences on rules

- Strict rules preferred over defeasible rules.
- Informations from more reliable source preferred over information from less reliable source.
- Newer information preferred over older information.

• . . .

Preferences on arguments

- Arguments containing only strict rules are preferred over arguments containing a defeasible rule.
- Specific arguments preferred over general arguments.
- Arguments are compared with respect to the last defeasible rules.
- Arguments are compared with respect to all defeasible rules.

• . . .

4 冊 ト 4 三 ト 4 三 ト

Definition (Argumentation Theory)

An argumentation theory for a defeasible logic program P is a pair $\mathcal{T} = (P, \prec)$ where $\prec \subseteq \mathcal{A} \times \mathcal{A}$ is a partial order on the set \mathcal{A} of all arguments of P.

Definition (Argumentation Framework)

An argumentation framework for an argumentation theory $\mathcal{T} = (P, \prec)$ is a pair $\mathcal{F} = (\mathcal{A}, \mathcal{R})$ where \mathcal{A} is the set of all arguments of P and $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is an attack relation satisfying \mathcal{A} attacks B iff \mathcal{A} rebuts or undercuts B and $\mathcal{A} \not\prec B$.

Now we can use any known semantics for abstract argumentation frameworks.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example (Simplified)

$$\begin{array}{lll} A_{1} \colon & [\rightarrow \textit{rooster}(\textit{rocky})] \\ A_{2} \colon & [\rightarrow \textit{from}_\textit{circus}(\textit{rocky})] \\ A_{3} \colon & [A_{1} \rightarrow \textit{bird}(\textit{rocky})] \\ A_{4} \colon & [A_{3} \Rightarrow \textit{fly}(\textit{rocky})] \\ A_{5} \colon & [A_{1} \Rightarrow \neg \textit{fly}(\textit{rocky})] \\ A_{6} \colon & [A_{1}, A_{2} \Rightarrow \textit{fly}(\textit{rocky})] \end{array}$$

$$\begin{array}{rrrr} A_4 & \prec & A_5 \\ A_5 & \prec & A_6 \end{array}$$

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks

For an argument A of a finite argumentation framework (A, R):

- Is A contained in all extensions?
- Is A attacked by all extensions?
- Is A contained in an extension?
- Is A attacked by an extension?

Definition (Move)

A move is a pair $\mu = (P, A)$ where $P = pl(\mu) \in \{PRO, OPP\}$ and $A = arg(\mu)$ is an argument.

Definition (Legal Move Function)

A legal move function is a mapping $\phi: \mathcal{A}^+ \mapsto 2^{\mathcal{A}}$ where \mathcal{A}^+ is the set of all finite non-empty sequences of arguments.

Definition (Dialog)

Let ϕ be a legal move function. A ϕ -dialog is a non-empty sequence of moves μ_0, μ_1, \ldots where

- $pl(\mu_0) = PRO$ and $pl(\mu_{i+1}) \neq pl(\mu_i)$
- $arg(\mu_{i+1}) \in \phi(arg(\mu_0), arg(\mu_1), \dots, arg(\mu_i))$

Definition (Dialog Tree)

Let ϕ be a legal move function. A $\phi\text{-dialog tree}$ for an argument A is a minimal tree such that

- the root is $\mu_0 = (PRO, A)$
- if $\mu_0, \mu_1, \dots, \mu_i$ is a path, $P \neq pl(\mu_i)$, and $A \in \phi(arg(\mu_0), arg(\mu_1), \dots, arg(\mu_i))$, then $\mu_{i+1} = (P, A)$ is a child of μ_i .

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Definition (Winning Dialog)

A ϕ -dialog d is won by *PRO* if $d = \mu_0, \mu_1, \dots, \mu_i$ is finite, $\phi(arg(\mu_0), arg(\mu_1), \dots, arg(\mu_i)) = \emptyset$, and $pl(\mu_i) = PRO$.

Definition (Proof)

A ϕ -proof for an argument A is a minimal finite subtree t' of ϕ -dialog tree t such that

- the root of t is the root of t'
- if μ is a node in t' and pl(μ) = PRO then all children of μ in t are also children of μ in t'
- if μ is a node in t' and pl(μ) = OPP then a child of μ in t which is also a child of μ in t'.
- all maximal branches of t' are won by PRO

(1日) (1日) (1日)

Definition (Legal Move Function Φ_G)

The legal move function ϕ_G is defined as follows:

- $A \in \phi_G(A_0, A_1, ..., A_{2i})$ iff
 - A attacks A_{2i} , i.e. $(A, A_{2i}) \in \mathcal{R}$
- $A \in \phi_G(A_0, A_1, \dots, A_{2i+1})$ iff
 - A attacks A_{2i+1} , i.e. $(A, A_{2i+1}) \in \mathcal{R}$
 - *PRO* does not repeat arguments, i.e. $A_{2j} \neq A$ for all $0 \leq j \leq i$
 - *PRO* is conflict-free, i.e. $\{A_0, A_2, \dots, A_{2i}, A\}$ is conflict-free

Proposition

- An argument A is in all complete extensions iff there exists ϕ_G -proof for A.
- **2** An argument A is in the grounded extension iff there exists ϕ_G -proof for A.

A (1) < A (1) < A (1) < A (1) </p>

Skeptical Complete (Grounded) Semantics

Credulous Complete (Preferred) Semantics

Definition (Legal Move Function Φ_P)

The legal move function ϕ_P is defined as follows:

- $A \in \phi_P(A_0, A_1, ..., A_{2i})$ iff
 - A attacks A_{2i} , i.e. $(A, A_{2i}) \in \mathcal{R}$
 - OPP does not repeat arguments, i.e. A_{2j+1} ≠ A for all 0 ≤ j < i
- $A \in \phi_P(A_0, A_1, ..., A_{2i+1})$ iff
 - A attacks A_{2i+1} , i.e. $(A, A_{2i+1}) \in \mathcal{R}$
 - *PRO* is conflict-free, i.e. $\{A_0, A_2, \ldots, A_{2i}, A\}$ is conflict-free

Proposition

• An argument A is in a complete extension iff there exists ϕ_P -proof for A.

Output A is in a preferred extension iff there exists φ_P-proof for A.

Credulous Complete (Preferred) Semantics

