
Lecture 9: Structured Argumentation Frameworks
2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

27 Nov 2012

Martin Baláž, Martin Homola Lecture 9: Structured Argumentation Frameworks



Example

bird(X ) ⇒ fly(X )
rooster(X ) → bird(X )
rooster(X ) ⇒ ¬ fly(X )

rooster(X ), from_circus(X ) ⇒ fly(X )
→ rooster(rocky)
→ from_circus(rocky)

fly(rocky)

rooster(rocky) from_circus(rocky)

¬fly(rocky)

rooster(rocky)

fly(rocky)

bird(rocky)

rooster(rocky)
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Argumentation Process

1 Choosing an underlaying language
2 Constructing arguments
3 Identifying conflicts among arguments
4 Comparing arguments
5 Defining the status of arguments
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Choosing an Underlaying Language

Definition (Strict and Defeasible Rule)

A strict rule is a formula of the form

L1, . . . , Ln → L0

where 0 ≤ n and each Li , 0 ≤ i ≤ n, is a classical literal.
A defeasible rule is a formula of the form

L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln ⇒ L0

where 0 ≤ m ≤ n and each Li , 0 ≤ i ≤ n, is a classical literal.

Definition (Defeasible Logic Program)

A defeasible logic program is a finite set of strict or defeasible rules.
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Constructing Arguments

Definition (Argument)

Let P be a defeasible logic program. An argument is
a default argument [L] where L is a default literal

Conc(A) = L
SubArgs(A) = {A}

a deductive argument [A1, . . . ,An → /⇒ L] if each Ai ,
1 ≤ i ≤ n, is an argument with Conc(Ai ) |= Li and
L1, . . . , Ln → /⇒ L is a rule in P

Conc(A) = L
SubArgs(A) = SubArgs(A1) ∪ · · · ∪ SubArgs(An) ∪ {A}
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Identifying Conflicts among Arguments

Definition (Rebut)

An argument A rebuts an argument B (on its subargument C ) iff C
is a deductive subargument of B and Conc(A) = ¬Conc(C ).

Definition (Undercut)

An argument A undercuts an argument B (on its subargument C )
iff C is a default subargument of B and Conc(A) = ∼Conc(C ).

A B

C
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Comparing Arguments

Preferences on rules
Strict rules preferred over defeasible rules.
Informations from more reliable source preferred over
information from less reliable source.
Newer information preferred over older information.
. . .

Preferences on arguments
Arguments containing only strict rules are preferred over
arguments containing a defeasible rule.
Specific arguments preferred over general arguments.
Arguments are compared with respect to the last defeasible
rules.
Arguments are compared with respect to all defeasible rules.
. . .
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Defining the Status of Arguments

Definition (Argumentation Theory)

An argumentation theory for a defeasible logic program P is a pair
T = (P,≺) where ≺⊆ A×A is a partial order on the set A of all
arguments of P .

Definition (Argumentation Framework)

An argumentation framework for an argumentation theory
T = (P,≺) is a pair F = (A,R) where A is the set of all
arguments of P and R ⊆ A×A is an attack relation satisfying A
attacks B iff A rebuts or undercuts B and A 6≺ B .

Now we can use any known semantics for abstract argumentation
frameworks.
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Example (Simplified)

A1 : [→ rooster(rocky)]
A2 : [→ from_circus(rocky)]
A3 : [A1 → bird(rocky)]
A4 : [A3 ⇒ fly(rocky)]
A5 : [A1 ⇒ ¬ fly(rocky)]
A6 : [A1,A2 ⇒ fly(rocky)]

A4 ≺ A5
A5 ≺ A6

A1 A2 A3 A4 A5 A6
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Reasoning with Argumentation Frameworks

For an argument A of a finite argumentation framework (A,R):
Is A contained in all extensions?
Is A attacked by all extensions?
Is A contained in an extension?
Is A attacked by an extension?
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Argumentation Game

Definition (Move)

A move is a pair µ = (P,A) where P = pl(µ) ∈ {PRO,OPP} and
A = arg(µ) is an argument.

Definition (Legal Move Function)

A legal move function is a mapping φ : A+ 7→ 2A where A+ is the
set of all finite non-empty sequences of arguments.
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Argumentation Game

Definition (Dialog)

Let φ be a legal move function. A φ-dialog is a non-empty
sequence of moves µ0, µ1, . . . where

pl(µ0) = PRO and pl(µi+1) 6= pl(µi )

arg(µi+1) ∈ φ(arg(µ0), arg(µ1), . . . , arg(µi ))

Definition (Dialog Tree)

Let φ be a legal move function. A φ-dialog tree for an argument A
is a minimal tree such that

the root is µ0 = (PRO,A)

if µ0, µ1, . . . , µi is a path, P 6= pl(µi ), and A ∈ φ(arg(µ0),
arg(µ1), . . . , arg(µi )), then µi+1 = (P,A) is a child of µi .
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Argumentation Game

Definition (Winning Dialog)

A φ-dialog d is won by PRO if d = µ0, µ1, . . . , µi is finite,
φ(arg(µ0), arg(µ1), . . . , arg(µi )) = ∅, and pl(µi ) = PRO.

Definition (Proof)

A φ-proof for an argument A is a minimal finite subtree t ′ of
φ-dialog tree t such that

the root of t is the root of t ′

if µ is a node in t ′ and pl(µ) = PRO then all children of µ in t
are also children of µ in t ′

if µ is a node in t ′ and pl(µ) = OPP then a child of µ in t
which is also a child of µ in t ′.
all maximal branches of t ′ are won by PRO
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Skeptical Complete (Grounded) Semantics

Definition (Legal Move Function ΦG )

The legal move function φG is defined as follows:
A ∈ φG (A0,A1, . . . ,A2i ) iff

A attacks A2i , i.e. (A,A2i ) ∈ R
A ∈ φG (A0,A1, . . . ,A2i+1) iff

A attacks A2i+1, i.e. (A,A2i+1) ∈ R
PRO does not repeat arguments, i.e. A2j 6= A for all 0 ≤ j ≤ i
PRO is conflict-free, i.e. {A0,A2, . . . ,A2i ,A} is conflict-free

Proposition
1 An argument A is in all complete extensions iff there exists
φG -proof for A.

2 An argument A is in the grounded extension iff there exists
φG -proof for A.
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Skeptical Complete (Grounded) Semantics
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Credulous Complete (Preferred) Semantics

Definition (Legal Move Function ΦP)

The legal move function φP is defined as follows:
A ∈ φP(A0,A1, . . . ,A2i ) iff

A attacks A2i , i.e. (A,A2i ) ∈ R
OPP does not repeat arguments, i.e. A2j+1 6= A for all
0 ≤ j < i

A ∈ φP(A0,A1, . . . ,A2i+1) iff
A attacks A2i+1, i.e. (A,A2i+1) ∈ R
PRO is conflict-free, i.e. {A0,A2, . . . ,A2i ,A} is conflict-free

Proposition
1 An argument A is in a complete extension iff there exists
φP -proof for A.

2 An argument A is in a preferred extension iff there exists
φP -proof for A.
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Credulous Complete (Preferred) Semantics
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