Lecture 9: Characterization of Non-Monotonic Reasoning 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

24 April 2013

Abstract characterization of logical consequence:

- $\bullet~\mathsf{Language}~\mathcal{L}\subseteq\mathcal{L}_\mathsf{FOL}$ a set of formulae
- $\bullet\,$ Knowledge base (theory) $\mathcal{K}\subseteq\mathcal{L}$ any subset of $\mathcal L$
- Models of \mathcal{K} a set of all FO interpretations M s.t. $M \models_{\mathsf{FOL}} \mathcal{K}$
- Consequence operator Cn(·) given ${\cal K}$ returns all formulae which are consequence of ${\cal K}$

Definition (Consequence Operator)

Given a language $\mathcal{L} \subseteq \mathcal{L}_{FOL}$ a consequence operator is any function $Cn: 2^{\mathcal{L}} \to 2^{\mathcal{L}}$.

▶ **4 글 ▶ 4**

Definition (Consequence Operator)

Given a language $\mathcal{L} \subseteq \mathcal{L}_{FOL}$ a consequence operator is any function $Cn: 2^{\mathcal{L}} \to 2^{\mathcal{L}}$.

Examples:

- $Cn_{FOL}(\mathcal{K}) = \{ \phi \mid \mathcal{K} \models_{FOL} \phi \}$
- $\mathsf{CWA}(\mathcal{K}) = \{\neg \phi \mid \phi \text{ is a ground atom and } \mathcal{K} \not\models_{\mathsf{FOL}} \phi\}$
- $Cn_{FOL + CWA}(\mathcal{K}) = Cn_{FOL}(\mathcal{K}) \cup CWA(\mathcal{K})$

We consider a consequence $\phi \in Cn(\mathcal{K})$ correct if it is strictly supported on given evidence in \mathcal{K} . We will use FOL as reference for "strictly supported" derivation. All other consequences are considered as hypotheses.

Definition (Correctness)

We say that a consequence operator $Cn(\cdot)$ is correct if for every KB \mathcal{K} and every model M of \mathcal{K} , M is also a model of $Cn(\mathcal{K})$. Otherwise $Cn(\cdot)$ is called non-correct (also hypothesis-generator).

Example: CWA is non-correct.

Definition (Monotonicity)

We say that a consequence operator $Cn(\cdot)$ is monotonic if for every KB \mathcal{K}_1 , \mathcal{K}_2 we have $\mathcal{K}_1 \subseteq \mathcal{K}_2 \implies Cn(\mathcal{K}_1) \subseteq Cn(\mathcal{K}_2)$. Otherwise $Cn(\cdot)$ is called non-monotonic.

Example: CWA is non-monotonic.

Definition (Reflexivity)

We say that a consequence operator $Cn(\cdot)$ is reflexive if for every KB \mathcal{K} we have $\mathcal{K} \subseteq Cn(\mathcal{K})$.

Definition (Cumulativeness)

We say that a consequence operator $Cn(\cdot)$ is cumulative if for every KB \mathcal{K}_1 , \mathcal{K}_2 we have $\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq Cn(\mathcal{K}_1) \Longrightarrow Cn(\mathcal{K}_1) = Cn(\mathcal{K}_2)$.

Example: CWA is not reflexive but $Cn_{FOL+CWA}$ is reflexive. Example: $Cn_{FOL+CWA}$ is cumulative.

Definition (Consistence Preservation)

A reflexive consequence operator $Cn(\cdot)$ is consistence preserving if for any consistent KB \mathcal{K} also $Cn(\mathcal{K})$ is consistent.

Definition (Consistence Preservation)

A reflexive consequence operator $Cn(\cdot)$ is consistence preserving if for any consistent KB \mathcal{K} also $Cn(\mathcal{K})$ is consistent.

Theorem

Every non-correct consequence operator that is reflexive and consistence preserving is necessarily non-monotonic.

Definition (Cosequence Opertor $Cn_{Def(D)}$)

Given a set of default rules D, $Cn_{Def(D)}(\mathcal{K}) = \{E \mid E \text{ is a default extension of the default theory } (D, \mathcal{K})\}.$

Definition (Credulous & Skeptical Cosequence)

Given a set of default rules D:

$$Cn_{Def(D)}^{\mathcal{C}}(\mathcal{K}) = \{ \phi \mid (\exists E \in Cn_{Def(D)}(\mathcal{K})) \phi \in E \}$$
$$Cn_{Def(D)}^{\mathcal{S}}(\mathcal{K}) = \{ \phi \mid (\forall E \in Cn_{Def(D)}(\mathcal{K})) \phi \in E \}$$

• Neither $Cn_{Def(D)}^{\mathcal{C}}(\cdot)$ nor $Cn_{Def(D)}^{\mathcal{S}}(\cdot)$ are reflexive.

- Neither $Cn_{Def(D)}^{\mathcal{C}}(\cdot)$ nor $Cn_{Def(D)}^{\mathcal{S}}(\cdot)$ are reflexive.
- If D is a set of normal default rules both $Cn_{Def(D)}^{C}(\cdot)$ and $Cn_{Def(D)}^{S}(\cdot)$ are reflexive but neither is cumulative.

- Neither $Cn_{Def(D)}^{\mathcal{C}}(\cdot)$ nor $Cn_{Def(D)}^{\mathcal{S}}(\cdot)$ are reflexive.
- If D is a set of normal default rules both $Cn_{Def(D)}^{C}(\cdot)$ and $Cn_{Def(D)}^{S}(\cdot)$ are reflexive but neither is cumulative.
- $Cn_{Def(D)}^{S}(\cdot)$ preserves consistence, $Cn_{Def(D)}^{C}(\cdot)$ does not.