
Computational Logic
Prolog

Martin Baláž

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

2011

Martin Baláž Computational Logic



Example

Logic Program:

father(abraham, isaac) ←
mother(sarah, isaac) ←
father(isaac , jacob) ←

parent(X ,Y ) ← father(X ,Y )
parent(X ,Y ) ← mother(X ,Y )

grandparent(X ,Z ) ← parent(X ,Y ), parent(Y ,Z )
ancestor(X ,Y ) ← parent(X ,Y )
ancestor(X ,Z ) ← parent(X ,Y ), ancestor(Y ,Z )

Query:

(∃X )(∃Y )ancestor(X ,Y )?

Answer:
Yes for X = abraham,Y = isaac; X = sarah,Y = isaac;
X = abraham,Y = jacob.

Martin Baláž Computational Logic



Programming with Prolog

Problem

Program

Query

Yes/No

Substitution

Solution

Modeling

Searching
proofs

Interpretation

Martin Baláž Computational Logic



Semantics for Definite Logic Programs

SLD-resolution ≡ Linear resolution with Selection function for
Definite clauses.

Let G be a goal A1 ∧ · · · ∧ Ak ∧ · · · ∧ Am, Ak be a selected atom,
and r be a rule B0 ← B1 ∧ · · · ∧ Bn. We say that a goal G ′ is
a resolvent derived from G and r using θ if θ is the most general
unifier of Ak and B0 and G ′ has the form
← (A1 ∧ · · · ∧ Ak−1 ∧ B1 ∧ · · · ∧ Bn ∧ Ak+1 ∧ · · · ∧ Am)θ.

An SLD-derivation of P ∪ {G} is a (posibly infinite) sequence of
goals G0, . . . ,Gi , . . . , where

G0 = G
Gi+1 is obtained from Gi and a rule ri+1 from P using θi+1

Martin Baláž Computational Logic



Semantics for Definite Logic Programs

A successful derivation ends in empty goal ←. A failed derivation
ends in non-empty goal with the property that all atoms does not
unify with the head of any rule. An infinite derivation is an infinite
sequence of goals.

Let P be a definite logic program and G be a definite goal. An
answer for P ∪ {G} is a substitution for variables in G . An answer
θ for P ∪ {G} is correct iff P |= (A1 ∧ · · · ∧ An)θ where
G = ← A1 ∧ · · · ∧ An.

Let P be a definite logic program and G be a definite goal G . Let
G0, . . . ,Gn be a successful derivation using θ1, . . . , θn. Then
θ1 . . . θn restricted to the variables of G is the computed answer.

Martin Baláž Computational Logic



Properties

Let P be a definite logic program and G be a definite goal. Then
every computed anwer for P ∪ {G} is a correct aswer for P ∪ {G}.

Let P be a definite logic program and G be a definite goal. For
every correct answer θ for P ∪ {G} there exists a computed answer
σ for P ∪ {G} and a substitution γ such that θ = σγ.

Let P be a definite logic program and G be a definite goal. Then
P ∪ {G} is unsatisfiable iff there exists a successful derivation of
P ∪ {G}.

Let MP be the least model of a definite logic program P . Then
MP = {A ∈ BP | P ∪ {← A} has a successful derivation}.

Martin Baláž Computational Logic



SLD-tree

Let P be a definite logic program and G be a definite goal. An
SLD-tree for P ∪ {G} is a minimal tree satisfying the following:

Each node of the tree is a definite goal
The root is G
If G ′ is a node of the tree and G ′′ is a resolvent derived from
G ′, then G ′ has a child G ′′

A computation rule is a function from a set of definite goals to
a set of atoms such that the value of the function for a goal is an
atom, called the selected atom, in that goal.

A search rule is a strategy for searching SLD-trees to find success
branches.

Martin Baláž Computational Logic



Example

Definite logic program P

p(a, b) ←
p(c , b) ←
p(x , z) ← p(x , y), p(y , z)
p(x , y) ← p(y , x)

Definite goal G

← p(a, c)

Martin Baláž Computational Logic



Semantics for Normal Logic Programs

SLDNF-resolution ≡ SLD-resolution augmented by the negation as
failure rule.

A negation as failure rule states that ∼A is true iff there exists
a finite SLDNF-tree for A with only failed branches.

Let P be a normal logic program and G be a normal goal. An
answer for P ∪ {G} is a substitution for variables in G . An answer
θ for P ∪ {G} is correct iff Comp(P) |= (L1 ∧ · · · ∧ Ln)θ where
G = ← L1 ∧ · · · ∧ Ln.

Martin Baláž Computational Logic



Ordering Rules

Ordering of rules matters.

Example:

reverse([X|Xs], Zs) :- reverse(Xs, Ys),
append(Ys, [X], Zs).

reverse([], []).

? reverse(Xs, [3,2,1]).
Xs = [1,2,3]
...

Martin Baláž Computational Logic



Ordering Literals

Ordering of literals matters.

Example:

reverse([], []).
reverse([X|Xs], Zs) :- append(Ys, [X], Zs),

reverse(Xs, Ys).

? reverse([1,2,3], Zs).
Zs = [3,2,1]
...

Martin Baláž Computational Logic



Floundering

Negation as failure

Example:

man(dilbert).
husband(bill).
single(X) :- man(X), not(husband(X)).

? single(X).
X = dilbert

Martin Baláž Computational Logic



Floundering

Negation as failure

Example:

man(dilbert).
husband(bill).
single(X) :- not(husband(X)), man(X).

? single(X).
No

Martin Baláž Computational Logic


