Computational Logic

Prolog

Martin Balaz

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Martin Balaz Computational Logic

Logic Program:

father(abraham, isaac)
mother(sarah, isaac
father(isaac, jaco
parent(X,Y
parent(X,Y
grandparent(X, Z
ancestor(X, Y
ancestor(X, Z

)
b)
)
)
)
)
)

Query:

(3X)(3Y)ancestor(X, Y)?

Answer:

Yes for X = abraham,Y =

TTTTTTTT

X = abraham, Y = jacob.

isaac; X = sarah, Y =

father(X,Y)
mother(X,Y)

parent(X,Y), parent(Y,Z)
parent(X,Y)
parent(X,Y), ancestor(Y, Z)

isaac;

Programming with Prolog

Problem Solution
Modeling Interpretation
Program Searching Yes/No
f
Query proots Substitution

Martin Balaz Computational Logic

Semantics for Definite Logic Programs

SLD-resolution = Linear resolution with Selection function for
Definite clauses.

Let G beagoal Ay A+ ANAcA---ANAm, A be a selected atom,
and r be a rule By < By A --- A\ B,. We say that a goal G’ is

a resolvent derived from G and r using 6 if 0 is the most general
unifier of A, and By and G’ has the form

— (AN NACLABLAAByANAgi1 A= A Ap)o.

An SLD-derivation of P U {G} is a (posibly infinite) sequence of
goals Gy, ..., G;,..., where

OGOZG

@ Gj,1 is obtained from G; and a rule riy; from P using 0,11

Martin Balaz Computational Logic

Semantics for Definite Logic Programs

A successful derivation ends in empty goal <—. A failed derivation
ends in non-empty goal with the property that all atoms does not
unify with the head of any rule. An infinite derivation is an infinite
sequence of goals.

Let P be a definite logic program and G be a definite goal. An
answer for P U {G} is a substitution for variables in G. An answer
0 for PU{G} is correct iff P = (A1 A--- A Ap)f where

G=<+ AN NA,.

Let P be a definite logic program and G be a definite goal G. Let
Go, . .., G, be a successful derivation using 61,...,6,. Then
0y ...0, restricted to the variables of G is the computed answer.

Martin Balaz Computational Logic

Let P be a definite logic program and G be a definite goal. Then
every computed anwer for PU {G} is a correct aswer for P U {G}.

Let P be a definite logic program and G be a definite goal. For
every correct answer § for P U {G} there exists a computed answer
o for PU{G} and a substitution such that § = 0.

Let P be a definite logic program and G be a definite goal. Then
P U {G} is unsatisfiable iff there exists a successful derivation of
PU{G}.

Let Mp be the least model of a definite logic program P. Then
Mp = {A € Bp | PU {< A} has a successful derivation}.

Martin Balaz Computational Logic

Let P be a definite logic program and G be a definite goal. An
SLD-tree for P U {G} is a minimal tree satisfying the following:

@ Each node of the tree is a definite goal
@ Therootis G

o If G’ is a node of the tree and G” is a resolvent derived from
G’, then G’ has a child G”

A computation rule is a function from a set of definite goals to
a set of atoms such that the value of the function for a goal is an
atom, called the selected atom, in that goal.

A search rule is a strategy for searching SLD-trees to find success
branches.

Martin Balaz Computational Logic

Definite logic program P

p(a,b) <«
p(c,b) <«
p(x,z) <« p(x,y),ply,z)
p(x,y) <+ ply,x)
Definite goal G
< p(a,c)

Martin Balaz Computational Logic

Semantics for Normal Logic Programs

SLDNF-resolution = SLD-resolution augmented by the negation as
failure rule.

A negation as failure rule states that ~ A is true iff there exists
a finite SLDNF-tree for A with only failed branches.

Let P be a normal logic program and G be a normal goal. An
answer for P U {G} is a substitution for variables in G. An answer
0 for PU{G} is correct iff Comp(P) = (L1 A--- A L,)0 where
G=<«+LiN---NL,.

Martin Balaz Computational Logic

Ordering Rules

Ordering of rules matters.

Example:

reverse([X|Xs], Zs) :- reverse(Xs, Ys),
append(Ys, [X], Zs).
reverse([], [1).

? reverse(Xs, [3,2,1]).
Xs = [1,2,3]

Martin Balaz Computational Logic

Ordering Literals

Ordering of literals matters.

Example:

reverse([], [1).
reverse([X|Xs], Zs) :- append(Ys, [X], Zs),
reverse(Xs, Ys).

? reverse([1,2,3], Zs).
Zs = [3,2,1]

Martin Balaz Computational Logic

Floundering

Negation as failure

Example:

man(dilbert) .
husband (bill).
single(X) :- man(X), not(husband(X)).

7 single(X).
X = dilbert

Martin Balaz Computational Logic

Floundering

Negation as failure

Example:

man(dilbert) .
husband (bill).
single(X) :- not(husband(X)), man(X).

7 single(X).
No

Martin Balaz Computational Logic

