

Narrow PhaseJuraj O
nderik | onderik@sccg.sk

Collision Detection Le
ss

on 06

Lecture 06 Outline

 Problem definition and motivations

 Proximity queries for convex objects
 Minkowski space, CSO, Support function

 GJK based algorithms (GJK, EPA, ISA-GJK)

 Voronoi Clipping Algorithm (V-Clip)

 Signed Distance Maps for collision detection

 Demos / tools / libs

Narrow-Phase Collision Detection

 Input: List of pairs of potentially colliding objects.

 Problem1: Find which sub-objects are really
intersecting and remove all non-colliding pairs.

 Problem2: Determine the proximity/contact
information, i.e. exact points where objects are
touching (interpenetrating), surface normal at
that contact point and separating / penetrating
distance of objects.

 Problem3: Recognize persistent contacts, i.e.
topologically equivalent contacts from previous
time steps

Narrow-Phase Collision Detection

 Output: List of contact regions with necessary
proximity information between colliding objects

 Strategies:
 Simplex based traversal of CSO – GJK based algorithms
 Feature tracking base algorithms as Lin-Canny or V-Clip
 Signed Distance Maps for collision detection
 Persistent clustering for contact generation and reduction

 Proximity Queries
 for Convex Objects

Minkowski Space

 Convex Bounded Point Set
 A set S of points p ∈ Rn is called convex and bounded if for

any two points a and b the line segment ab lies entirely in S
and the distance |a - b| is finite (at most β)

 a S b S t (0, 1) (1 − t)a + tb S |a - b| ≤ ∈ ∧ ∈ ∧ ∈ ⇒ ∈ ∧ β
 S must be continuous, but needs not to be smooth

a

b

a

b

Convex set Non-convex set

Minkowski Space

 Given any two convex objects A and B we define
Minkowski Sum, Difference and Translation as

 Minkowski Sum A B⊕
 A B = {a + b | a A b B}⊕ ∈ ∧ ∈

 Minkowski Difference A ⊖ B (known as CSO)
 A ⊖ B = A ⊕ (-B) = {a − b | a A b B}∈ ∧ ∈

 Minkowski Translation A t⊕
 A t = A {t} = {a + t | a A}⊕ ⊕ ∈

Minkowski Space

B

A
A ⊕ B

0 -B

B

A

A  B

0

A

A ⊕ t

t
0

Difference TranslationSum

Touching Vectors

 Touching Contact
 Two convex objects A and B are in touching contact, iff their

intersection (as a point set) is a subset of some (contact)
plane β. Formally: A ∩ B β⊂

 Touching Vector
 The touching vector t

AB
 between two convex objects A and B

is any shortest translational vector t moving objects into the
touching contact.

 t
AB

 {t | A ∩ (B t) β t R∈ ⊕ ⊂ ∧ ∈ 3 |t| = d∧
AB

}

 Touching Distance
 Touching distance d

AB
 is the length of touching vector t

AB
.

 d
AB

 = min {|t| | A ∩ (B t) β t R⊕ ⊂ ∧ ∈ 3 }

Touching Vectors and CSO

b

a
b

A

t

B

a

A

t

B

a

b

A

B

t

a - b

CSO

a - b

CSO

a - b

CSO

Touching vector Penetration vector Separation vector

Touching Vectors

 Objects are in close proximity if their touching
distance is smaller than a defined threshold

 If objects are disjoint touching vector (distance) is
usually called as separation vector (distance)

 If objects are intersecting touching vector
(distance) is usually called as penetration vector
(depth)

 Separation vector is unique. Penetration vector is
usually not unique (co-centric circles)

Support Set and Boundary

 Support Set
 The set of points from a convex object C which have a

minimal projection onto a direction axis d is the support set
of C

 Sd
C
 = { p | p C d∈ ∧ Tp = min{ dTc | c C } }∈

 Support Boundary
 The set of all support points from a convex object C with

respect to any direction d is the boundary of C
 ∂(C) = { p | p S∈ d

C
 d R∧ ∈ 3 }

Support Set and Boundary

-v

Support Planes

A B

+v

Support Points

Support Set

Minimal Projections

Projection Axis

Boundary

Projected Line Segment

Support Scenario

Touching Vectors and Boundary

 Touching Vector Theorem
 Any translational vector t moves two convex objects A and B

into touching contact, iff it lies on the boundary of their CSO
 A ∩ (B t) β t ∂(A ⊕ ⊂ ⇔ ∈ ⊖ B)

 This theorem can simplify the definition of
touching contact, vector and distance, by
replacing (A ∩ (B t) β) with the t ∂(A ⊕ ⊂ ∈ ⊖ B)
 d

AB
 = min { |t| | t ∂(A ∈ ⊖ B) }

 t
AB

 { t | t ∂(A ∈ ∈ ⊖ B) |t| = d∧
AB

 }

Contact Region

Contact Plane

Contact
Points

n

Support
Planes

Contact
Region

Contact
Region

Intersecting
objects

disjoint
objects

Contact Region

 If objects are in touching contact (t
AB

 is zero), their
intersection simply forms the contact region

 If objects penetrate or are disjoint (t
AB

 is non-zero)
contact region is constructed as follows
 Compute two support sets S

A
+tAB and S

B
-tAB for A and B w.r.t t

AB

 Project both sets onto touching vector t
AB

 and take median

 Form contact plane with median as origin and normal as t
AB

 Project both support sets onto contact plane and take their
(ideally) intersection as contact region

 Gilbert - Johnson - Keerthi Algorithm

GJK

Gilbert - Johnson - Keerthi Algorithm

 Key idea of all GJK based algorithms:
iterative search for the touching vector in CSO

 Strategy: Perform a descent traversal of the CSO
surface to find the closest point to the origin

 Problem: Naive construction and traversal of CSO
is expensive and slow

 Solution: Simple support function can select
proper support points on CSO and thus speed up
the traversal to an almost constant time assuming
coherent simulation.

Support Function

 Support function support(C,d) S∈ d
C
 of a convex

object C w.r.t. direction d simply returns any
support point from the respective support set Sd

C

 Support Function Operations
 Assuming support(A, d) S∈ d

A
 and support(B, d) S∈ d

B
, we

define the support functions as follows
 support(-B, d) = -support(B,-d) S∈ d

-B

 support(A B, d) = ⊕ support(A, d) + support(B, d) S∈ d
A B⊕

 support(A ⊖ B, d) = support(A (−B), d)⊕

 = support(A, d) + support(−B, d)
 = support(A,+d) − support(B,−d)

Proximity GJK Algorithm

 The traversal is done by iteratively constructing a
sequence of simplices in 3D
 point or line or triangle or tetrahedron

 In each iteration newly created simplex is closer to
the origin as the one in previous iteration

 New simplex is created by

 1) Adding a support point to the former simplex

 2) Taking the smallest sub-simplex which contains
the closest point to the origin

Proximity GJK Algorithm

A

B

v

w

v

w

a

A

B

CSO

a

b

CSO

b

O

v

Proximity GJK Algorithm

v

w

w

A

B

A

B

a

b

CSO CSO

b a

v

v

O

Proximity GJK Algorithm

w

v

w

A

B

A

B

CSO CSO

b a

b

a

t

v

v

O

Proximity GJK Algorithm Algorithm

v

w

A

B

CSO

b

a

t

v

O

Proximity GJK Algorithm

Computing Support Function

 Searching for the support vertex w heavily
depends on the representation of the convex
objects A and B

 For a simple primitives it can be computed directly

 For convex polytopes
 Naive approach is to project all vertices onto the direction

axis and take any one with the minimal projection
 if we consider a coherent simulation we can use a local

search sometimes called as “hill climbing” and find the
support vertex in almost constant time

Hill Climbing Support Function

 For convex polytopes do a local search to “refine”
the support point from previous simulation state

Simplex Refinement

 Problem: Given a simplex and new vertex form
new simple by adding the vertex and select sub-
simplex closest to the origin

 Bad solution: The simplex can be done by solving a
system of linear equations (slow, numeric issues)

 Good solution: Form new simplex and test in which
external Voronoi region the origin lies.

 The selected Voronoi region directly shows us
which sub-simplex is the desired (closest) one

Voronoi Simplex Refinement

w

W1 W2

W3

e1
e2

e3

n1

n3

n2

v3

u1 v1

u2

v2

u3

w

e1

W1

w

W1
W2

e1
e2

u1 v1n1

Point Simplex

Line Simplex

Triangle Simplex

Voronoi Simplex Refinement

 Empty Simplex: A vertex simplex {w} is formed
 The smallest simplex, which contains the closest point to the

origin is {w} (case 0)

 Vertex Simplex: An edge simplex {W1,w} is formed
 It has 2 vertex regions {W1, w} and one edge region {e1}
 Since W1 lies on support plane which is perpendicular to the

support axis (vector w) origin can not be in the region of W1
 Thus we check only regions of w and e1 by projecting -w onto

the edge e1 (case 1)

Voronoi Simplex Refinement

 Edge Simplex: A face simplex {W1,W2,w} is formed
 It has 3 vertex regions, 3 edge regions and 2 face regions
 The origin can be only in {w, e1, e2, n1} regions
 Construct Voronoi planes with normals {e1, e2, u1, v1} and

test whether the origin is above or below these planes, i.e.
compare signs of -w projections onto these normals

 Face Simplex: A tetrahedron simplex {W1,W2,W3,
w} is formed
 A tetrahedron has 4 vertex regions, 4 face regions, 6 edge

regions and 1 interior region (T)
 Origin can lie only only in regions {w, e1, e2, e3, n1, n2, n3,T}
 Construct Voronoi planes with normals {e1, e2, e3, n1, n2, n3,

u1, u2, u3, v1, v2, v3} and test sign -w projection onto normals

Best Simplex Algorithm

Closest Point on Simplex

 Problem: Given (0 or 1 or 2 or 3) simplex
{W1,W2,W3} find the closest point to the origin

 Empty Simplex: Return 0

 Vertex Simplex: Return W1

 Edge Simplex: Return the closest point on line
{W1,W2} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

 Face Simplex: Return the closest point on plane
{W1,W2,W3} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

Closest Point Algorithm

d

GJK Overlap Test

 Incremental Separating-Axis GJK (ISA-GJK)
 A subtle modification to the proximity GJK
 Descent overlap test for convex objects
 Iteratively searches for some separating axis
 Average constant time complexity in coherent simulation

 Principle: Similar traversal to Proximity GJK
 Reports overlap: When the best simplex is tetrahedron
 Reports no-overlap: When the signed distance of the support

plane to the origin is positive

 vTw = vT support(A ⊖ B, v) = vT support(A,+v) - vT support(B,-v) > 0

ISA-GJK Algorithm

V-Clip
Algorithm

 Voronoi Clipping Algorithm

External Voronoi Regions

 Interior Set:
 The set of all interior points int(C) of a convex polytope C is

the intersection of negative half-spaces formed by all faces
of C (surface points are not included)

 int(C) = { c R3 | ds(c, F) < 0 F C }∈ ∧ ∈

 Distance:
 The distance d(c,X) between a feature X and some point c is

the minimum distance between c and any point of X

 d(c,X) = min { |x − c| | x X }∈

External Voronoi Regions

 Signed Distance
 The signed distance d

s
(c, F) between a point c and a plane F,

defined by a unit normal n
F
 and a reference point o

F
 is the

projection of the reference vector (c − o
F
) onto planes normal

 ds(c, F) = nT
F
 (c − o

F
)

 Having two incident features X, Y: if X has a lower
dimension than Y, then X must be a subset of Y and
therefore the distance of any point c to X is less
than or equal to Y

 X ∩ Y dim(X) < dim(Y) X Y d(c,X) ≤ d(c,Y)∧ ⇒ ⊂ ⇒

External Voronoi Regions

 External Voronoi Region
 The Voronoi region VR(X) of a feature X on some convex

polytope C is a set of external points which are closer (≤) to X
than to any other feature Y in C

 VR(X) = { c ∉ int(C) | d(c,X) ≤ d(c, Y) Y C } ∧ ∈

 External Voronoi Plane
 The Voronoi plane VP(X,Y) of two incident features X and Y is

the plane containing the intersection of their Voronoi regions.
 VP(X,Y) = β VR(X) ∩ VR(Y) β∧ ⊂

 Inter-feature Distance
 The inter-feature distance d(X, Y) between features X and Y

is the minimum distance between any points x X and y Y∈ ∈
 d(X,Y) = min { |x − y| | x X y Y }∈ ∧ ∈

External Voronoi Regions

VP (V,E)

Vertex Voronoi Region

V
VR (V)

VP (E,F)

VP (V,E)

Edge Voronoi Region

E
VR (E)

VP (E,F)

Face Voronoi Region

F

VR (F)

E

Voronoi Region Theorem

 Let X A and Y B be a pair of features from ∈ ∈
disjoint convex polytopes A and B.

 Let x X and y Y be the closest points between ∈ ∈
X and Y

 Points x and y are the (globally) closest points
between A and B iff x VR(Y) y VR(X)∈ ∧ ∈

Voronoi Region Theorem

VR (Y)

VR (X)A

B
X

Y

x

y

Voronoi region theorem

V-Clip Algorithm

 Key idea of the V-Clip algorithm is an efficient
search for two closest features.

 Obviously an exhaustive search is a very
expensive solution

 Fortunately the following Voronoi Region Theorem
allows as to find the global minimum of the inter-
feature distance, by performing usually only a
few iterations of a local search

V-Clip Algorithm

 Given two convex polytopes A, B and any two
features X A, Y B∈ ∈

 In each iteration V-Clip checks if they satisfy the
Voronoi Region Theorem.
 If they don’t, it changes X and Y to some (usually incident)

features X' and Y', so that either the sum their dimensions or
the inter-feature distance strictly decreases.

 Assuming a finite number of features the algorithm can
never cycle

 If we initialize X and Y with the closest features from the
previous time-step and the simulation is coherent, then we
probably need only a few iterations to find new closest
features.

Vertex Clipping

 Given a vertex V from one object, some ”old”
feature N from another object and a set of
feature pairs S

n

 The vertex clipping simply marks X (Y) if the
vertex V lies above (below) the VP(X,Y) for each
feature pair XY S∈

N

 First it clears all features among SN (ClearAll(S
N
))

 Next it tests the side (w.r.t. Voronoi plane) of V and mark
”further” features.

 Finally it updates N with some unmarked feature
(UpdateClear(N, SN)) and returns true if N was changed.

Vertex Clipping Cases

d≤0

- +

E/FV/E

V

a

E/F

- +
b

V/E

d>0
V

β β

ClipVertex and UpdateClear

 In: A feature N to be updated and a set of clipping feature pairs SN

 Out: Test if the feature N was updated (true/false)

 function UPDATECLEAR(N, SN) : bool
 1: M ← N; /* store old feature */
 2: foreach XY in SN do
 3: if (X is “clear”) then N ← X; break; /* update old to closest feature */
 4: if (Y is “clear”) then N ← Y; break; /* update old to closest feature */
 5: end
 6: return N != M; /* true if feature changed */
 end

Edge Clipping

 Take an edge E, the ”old” feature N, a set of
respective feature pairs S

N
 and perform a

sequence of local tests to properly mark
”further” features

 Let d
1
, d

2
 represent signed distances of the

endpoint vertices V
1
E , V

2
E to the Voronoi plane β =

VP(X,Y) of a particular feature pair XY S∈
N

 If both vertices lie on the same side of the clipping
plane (sgn(d

1
d

2
) > 0), we simply mark the feature

of the opposite side as in vertex clipping

Edge Clipping

 If vertices lie on different sides (sgn(d
1
d

2
) < 0),

edge E intersects the clipping plane in some point
p = (1 - λ)V

1
E + λV

2
E, where λ = d

2
/(d

1
-d

2
) and we must

consider two sub-cases depending on the type of
the feature pair

 Let vector u = sgn(d
2
)(V

2
E − V

1
E) represent the edge

E pointing out of the negative half-space to the
positive half-space of β

 If XY is a ”VE” pair, the local test depends on the
sign of the (X − p) projection onto the edge vector
u, i.e. +sgn(uT(X − p))

Edge Clipping

 If XY is a ”EF”pair, there are another two sub-
cases.

 If p lies above the face Y, the local test depends
on the angle between edge vector u and the face
normal vector n

 If p lies below the face Y we use the similar local
test, but mark opposite features

 Therefore the final local test (handling both sub-
cases) can be written as: - sgn(nTu)sgn(d

s
(p,Y))

Edge Clipping Cases

d1≤0

>90˚

- +

EV

d2>0

u

d2>0

<90˚

EV

d1≤0

u

- +

d1≤0

<90˚

- +

FE

d2>0

u

p

p

+
-

n

d2>0

>90˚

FE

d1≤0

u

- +

p

+
-

n

d1≤0

<90˚

- +

FE

d2>0

u

+
-

n

- +

FE+
-

n

d2>0

>90˚

d1≤0

up

d

c

f

e

h

g

p

p
d1≤0

- +

E/F

d2≤0

u

E/F

- +
b

a

d1>0

d2>0

u

V/E

V/E

β

β

β

β

β

β

β

β

ClipEdge Algorithm

Signed
Distance
Maps

for collision detection

Signed Distance Map

 Signed distance map: SDM
N
(V) is N×N×N regular

grid, where each unit cell with a center point p
stores the signed distance to the closest point on
the surface of some volume V.

 This signed distance is a combination of a sign
function sgn

V
(p) and the unsigned distance

function d(p, V) w.r.t. V.

 SDM
N
(V) = { sgn

V
(p)d(p,V) | p = (i + 0.5, j + 0.5 , k + 0.5) ∧

 1 ≤ i, j, k ≤ N }

Signed Distance Maps

 Signed distance maps (SDM) become recently a
popular technique for approximate collision
detection and distance computation.

 Pros: Efficient overlap test, fast contact
generation and penetration depth computation
for arbitrary shaped, non-convex objects with
complex and highly tessellated geometry

 Suitable even for real-time applications as games

 Cons: Huge amount of memory necessary for
massive scenarios and a large number of
redundant (unnecessary) contacts generated
during the collision detection

Distance Map Construction

 Brute force construction
 For each grid cell we need to compute the distance of its center

to each surface triangle and store the shortest distance
 Assuming N is the grid size and M is the number of triangles, we

have to call the primitive point-to-triangle distance function
N×N×N×M times

 Other Efficient Methods
 Lower-Upper Bound Tree (LUB-Tree)
 Characteristic/Scan Conversion (CSC)
 Chamfer and Vector Distance Transform (CDT, VDT)
 Fast Marching Method (FMM)

Proximity Queries with SDM

 Performing proximity queries using SDM involves
simple point location tests.

 The key idea is to sample several points on the
surface and store it together with the SDM.

 During the collision detection sample points of one
object are transformed into the local space of the
other object and are ”looked-up” in the SDM of the
other object and vice versa.

 Surface points located inside other object (lie
under the zero level (SDM

A
(p

B
) ≤ 0)) are used to

create necessary contact information (contact
point, contact normal, penetration depth, etc.)

 The End

