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 Problem definition and motivations

 Proximity queries for convex objects
 Minkowski space, CSO, Support function

 GJK based algorithms (GJK, EPA, ISA-GJK)

 Voronoi Clipping Algorithm (V-Clip)

 Signed Distance Maps for collision detection

 Demos / tools / libs



    

Narrow-Phase Collision Detection

 Input: List of pairs of potentially colliding objects.

 Problem1: Find which sub-objects are really 
intersecting and remove all non-colliding pairs.

 Problem2: Determine the proximity/contact 
information, i.e. exact points where objects are 
touching (interpenetrating), surface normal at 
that contact point and separating / penetrating 
distance of objects.

 Problem3: Recognize persistent contacts, i.e. 
topologically equivalent contacts from previous 
time steps



    

Narrow-Phase Collision Detection

 Output: List of contact regions with necessary 
proximity information between colliding objects

 Strategies:
 Simplex based traversal of CSO – GJK based algorithms
 Feature tracking base algorithms as Lin-Canny or V-Clip
 Signed Distance Maps for collision detection
 Persistent clustering for contact generation and reduction



    

 Proximity Queries 
 for Convex Objects 



    

Minkowski Space

 Convex Bounded Point Set
 A set S of points p  ∈ Rn is called convex and bounded if for 

any two points a and b the line segment ab lies entirely in S 
and the distance |a - b| is finite (at most β)

 a  S  b  S  t  (0, 1)  (1 − t)a + tb  S  |a - b| ≤ ∈ ∧ ∈ ∧ ∈ ⇒ ∈ ∧ β
 S must be continuous, but needs not to be smooth
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Minkowski Space

 Given any two convex objects A and B we define 
Minkowski Sum, Difference and Translation as

 Minkowski Sum A  B⊕
 A  B = {a + b | a  A  b  B}⊕ ∈ ∧ ∈

 Minkowski Difference A ⊖ B (known as CSO)
 A  ⊖ B = A ⊕ (-B) = {a − b | a  A  b  B}∈ ∧ ∈

 Minkowski Translation A  t⊕
 A  t = A  {t} = {a + t | a  A}⊕ ⊕ ∈



    

Minkowski Space
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Touching Vectors

 Touching Contact
 Two convex objects A and B are in touching contact, iff their 

intersection (as a point set) is a subset of some (contact) 
plane β.   Formally: A ∩ B  β⊂

 Touching Vector
 The touching vector t

AB
 between two convex objects A and B 

is any shortest translational vector t moving objects into the 
touching contact. 

 t
AB

  {t | A ∩ (B  t)  β  t  R∈ ⊕ ⊂ ∧ ∈ 3  |t| = d∧
AB

}

 Touching Distance
 Touching distance d

AB
 is the length of touching vector t

AB
.

 d
AB

 = min {|t| | A ∩ (B  t)  β  t  R⊕ ⊂ ∧ ∈ 3 }



    

Touching Vectors and CSO
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Touching Vectors

 Objects are in close proximity if their touching 
distance is smaller than a defined threshold

 If objects are disjoint touching vector (distance) is 
usually called as separation vector (distance)

 If objects are intersecting touching vector 
(distance) is usually called as penetration vector 
(depth)

 Separation vector is unique. Penetration vector is 
usually not unique (co-centric circles)



    

Support Set and Boundary

 Support Set
 The set of points from a convex object C which have a 

minimal projection onto a direction axis d is the support set 
of C

 Sd
C
 = { p | p  C  d∈ ∧ Tp = min{ dTc | c  C } }∈

 Support Boundary
 The set of all support points from a convex object C with 

respect to any direction d is the boundary of C
 ∂(C) = { p | p  S∈ d

C
  d  R∧ ∈ 3 }



    

Support Set and Boundary
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Touching Vectors and Boundary

 Touching Vector Theorem
 Any translational vector t moves two convex objects A and B 

into touching contact, iff it lies on the boundary of their CSO
 A ∩ (B  t)  β  t  ∂(A ⊕ ⊂ ⇔ ∈  ⊖ B)

 This theorem can simplify the definition of 
touching contact, vector and distance, by 
replacing (A ∩ (B  t)  β) with the t  ∂(A ⊕ ⊂ ∈ ⊖ B)
 d

AB
 = min { |t| | t  ∂(A ∈  ⊖ B) }

 t
AB

  { t | t  ∂(A ∈ ∈  ⊖ B)  |t| = d∧
AB

 }
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Contact Region

 If objects are in touching contact (t
AB

 is zero), their 
intersection simply forms the contact region

 If objects penetrate or are disjoint (t
AB

 is non-zero) 
contact region is constructed as follows
 Compute two support sets S

A
+tAB and S

B
-tAB for A and B w.r.t t

AB

 Project both sets onto touching vector t
AB

 and take median

 Form contact plane with median as origin and normal as t
AB

 Project both support sets onto contact plane and take their 
(ideally) intersection as contact region



    Gilbert - Johnson - Keerthi Algorithm

GJK



    

Gilbert - Johnson - Keerthi Algorithm

 Key idea of all GJK based algorithms:             
iterative search for the touching vector in CSO

 Strategy: Perform a descent traversal of the CSO 
surface to find the closest point to the origin

 Problem: Naive construction and traversal of CSO 
is expensive and slow

 Solution: Simple support function can select 
proper support points on CSO and thus speed up 
the traversal to an almost constant time assuming 
coherent simulation.



    

Support Function

 Support function support(C,d) S∈ d
C
 of a convex 

object C w.r.t. direction d simply returns any 
support point from the respective support set Sd

C

 Support Function Operations
 Assuming support(A, d)  S∈ d

A
 and support(B, d)  S∈ d

B
, we 

define the support functions as follows
 support(-B, d) = -support(B,-d)  S∈ d

-B

 support(A  B, d) = ⊕ support(A, d) + support(B, d)  S∈ d
A B⊕

 support(A ⊖ B, d) = support(A  (−B), d)⊕

                               = support(A, d) + support(−B, d)
                               = support(A,+d) − support(B,−d)



    

Proximity GJK Algorithm

 The traversal is done by iteratively constructing a 
sequence of simplices in 3D
 point or line or triangle or tetrahedron

 In each iteration newly created simplex is closer to 
the origin as the one in previous iteration

 New simplex is created by 

 1) Adding a support point to the former simplex

 2) Taking the smallest sub-simplex which contains 
the closest point to the origin



    

Proximity GJK Algorithm
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Proximity GJK Algorithm
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Proximity GJK Algorithm

w

v

w

A

B

A

B

CSO CSO

b a

b

a

t

v

v

O



    

Proximity GJK Algorithm Algorithm
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Proximity GJK Algorithm



    

Computing Support Function

 Searching for the support vertex w heavily 
depends on the representation of the convex 
objects A and B

 For a simple primitives it can be computed directly

 For convex polytopes
 Naive approach is to project all vertices onto the direction 

axis and take any one with the minimal projection
 if we consider a coherent simulation we can use a local 

search sometimes called as “hill climbing” and find the 
support vertex in almost constant time



    

Hill Climbing Support Function 

 For convex polytopes do a local search to “refine” 
the support point from previous simulation state



    

Simplex Refinement

 Problem: Given a simplex and new vertex form 
new simple by adding the vertex and select sub-
simplex closest to the origin

 Bad solution: The simplex can be done by solving a 
system of linear equations (slow, numeric issues)

 Good solution: Form new simplex and test in which 
external Voronoi region the origin lies.

 The selected Voronoi region directly shows us 
which sub-simplex is the desired (closest) one



    

Voronoi Simplex Refinement
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Voronoi Simplex Refinement

 Empty Simplex: A vertex simplex {w} is formed
 The smallest simplex, which contains the closest point to the 

origin is {w} (case 0)

 Vertex Simplex: An edge simplex {W1,w} is formed
 It has 2 vertex regions {W1, w} and one edge region {e1}
 Since W1 lies on support plane which is perpendicular to the 

support axis (vector w) origin can not be in the region of W1
 Thus we check only regions of w and e1 by projecting -w onto 

the edge e1 (case 1)



    

Voronoi Simplex Refinement

 Edge Simplex: A face simplex {W1,W2,w} is formed
 It has 3 vertex regions, 3 edge regions and 2 face regions
 The origin can be only in {w, e1, e2, n1} regions
 Construct Voronoi planes with normals {e1, e2, u1, v1} and 

test whether the origin is above or below these planes, i.e. 
compare signs of -w projections onto these normals

 Face Simplex: A tetrahedron simplex {W1,W2,W3, 
w} is formed
 A tetrahedron has 4 vertex regions, 4 face regions, 6 edge 

regions and 1 interior region (T)
 Origin can lie only only in regions {w, e1, e2, e3, n1, n2, n3,T}
 Construct Voronoi planes with normals {e1, e2, e3, n1, n2, n3, 

u1, u2, u3, v1, v2, v3} and test sign -w projection onto normals



    

Best Simplex Algorithm



    

Closest Point on Simplex

 Problem: Given (0 or 1 or 2 or 3) simplex 
{W1,W2,W3} find the closest point to the origin

 Empty Simplex: Return 0 

 Vertex Simplex: Return W1

 Edge Simplex: Return the closest point on line 
{W1,W2} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

 Face Simplex: Return the closest point on plane 
{W1,W2,W3} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)



    

Closest Point Algorithm
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GJK Overlap Test 

 Incremental Separating-Axis GJK (ISA-GJK)
 A subtle modification to the proximity GJK
 Descent overlap test for convex objects
 Iteratively searches for some separating axis
 Average constant time complexity in coherent simulation

 Principle: Similar traversal to Proximity GJK
 Reports overlap: When the best simplex is tetrahedron
 Reports no-overlap: When the signed distance of the support 

plane to the origin is positive

 vTw = vT support(A  ⊖ B, v) = vT support(A,+v) - vT support(B,-v) > 0



    

ISA-GJK Algorithm



    

V-Clip
Algorithm

    Voronoi Clipping Algorithm



    

External Voronoi Regions

 Interior Set:
 The set of all interior points int(C) of a convex polytope C is 

the intersection of negative half-spaces formed by all faces 
of C (surface points are not included)

 int(C) = { c  R3 | ds(c, F) < 0  F  C }∈ ∧ ∈

 Distance:
 The distance d(c,X) between a feature X and some point c is 

the minimum distance between c and any point of X

 d(c,X) = min { |x − c| | x  X }∈



    

External Voronoi Regions

 Signed Distance
 The signed distance d

s
(c, F) between a point c and a plane F, 

defined by a unit normal n
F
 and a reference point o

F
 is the 

projection of the reference vector (c − o
F
 ) onto planes normal

 ds(c, F) = nT
F
 (c − o

F
 )

 Having two incident features X, Y: if X has a lower 
dimension than Y, then X must be a subset of Y and 
therefore the distance of any point c to X is less 
than or equal to Y

 X ∩ Y  dim(X) < dim(Y)  X  Y  d(c,X) ≤ d(c,Y)∧ ⇒ ⊂ ⇒



    

External Voronoi Regions

 External Voronoi Region
 The Voronoi region VR(X) of a feature X on some convex 

polytope C is a set of external points which are closer (≤) to X 
than to any other feature Y in C

 VR(X) = { c ∉ int(C) | d(c,X) ≤ d(c, Y )  Y  C } ∧ ∈

 External Voronoi Plane
 The Voronoi plane VP(X,Y) of two incident features X and Y is 

the plane containing the intersection of their Voronoi regions.
 VP(X,Y) = β  VR(X) ∩ VR(Y )  β∧ ⊂

 Inter-feature Distance
 The inter-feature distance d(X, Y ) between features X and Y 

is the minimum distance between any points x  X and y  Y∈ ∈
 d(X,Y) = min { |x − y| | x  X  y  Y }∈ ∧ ∈



    

External Voronoi Regions
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Voronoi Region Theorem

 Let X  A and Y  B be a pair of features from ∈ ∈
disjoint convex polytopes A and B.

 Let x  X and y  Y be the closest points between ∈ ∈
X and Y

 Points x and y are the (globally) closest points 
between A and B iff x  VR(Y)  y  VR(X)∈ ∧ ∈



    

Voronoi Region Theorem
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V-Clip Algorithm

 Key idea of the V-Clip algorithm is an efficient 
search for two closest features.

 Obviously an exhaustive search is a very 
expensive solution

 Fortunately the following Voronoi Region Theorem 
allows as to find the global minimum of the inter-
feature distance, by performing usually only a 
few iterations of a local search



    

V-Clip Algorithm

 Given two convex polytopes A, B and any two 
features X  A, Y  B∈ ∈

 In each iteration V-Clip checks if they satisfy the 
Voronoi Region Theorem.
 If they don’t, it changes X and Y to some (usually incident) 

features X' and Y', so that either the sum their dimensions or 
the inter-feature distance strictly decreases.

 Assuming a finite number of features the algorithm can 
never cycle

 If we initialize X and Y with the closest features from the 
previous time-step and the simulation is coherent, then we 
probably need only a few iterations to find new closest 
features.



    



    

Vertex Clipping

 Given a vertex V from one object, some ”old” 
feature N from another object and a set of 
feature pairs S

n

 The vertex clipping simply marks X (Y) if the 
vertex V lies above (below) the VP(X,Y) for each 
feature pair XY  S∈

N

 First it clears all features among SN (ClearAll(S
N
))

 Next it tests the side (w.r.t. Voronoi plane) of V and mark 
”further” features.

 Finally it updates N with some unmarked feature 
(UpdateClear(N, SN)) and returns true if N was changed.



    

Vertex Clipping Cases
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ClipVertex and UpdateClear

  In: A feature N to be updated and a set of clipping feature pairs SN

  Out: Test if the feature N was updated (true/false)

  function UPDATECLEAR(N, SN) : bool
   1:    M ← N;                                                        /* store old feature */
   2:    foreach XY in SN do
   3:        if (X  is “clear”) then N ← X; break;     /* update old to closest feature */
   4:        if (Y  is “clear”) then N ← Y; break;     /* update old to closest feature */
   5:    end
   6:    return N  != M;                                            /* true if feature changed */
  end



    

Edge Clipping

 Take an edge E, the ”old” feature N, a set of 
respective feature pairs S

N
 and perform a 

sequence of local tests to properly mark 
”further” features

 Let d
1
, d

2
 represent signed distances of the 

endpoint vertices V
1
E , V

2
E to the Voronoi plane β = 

VP(X,Y) of a particular feature pair XY  S∈
N

 If both vertices lie on the same side of the clipping 
plane (sgn(d

1
d

2
) > 0), we simply mark the feature 

of the opposite side as in vertex clipping



    

Edge Clipping

 If vertices lie on different sides ( sgn(d
1
d

2
) < 0), 

edge E intersects the clipping plane in some point 
p = (1 - λ)V

1
E + λV

2
E, where λ = d

2
/(d

1
-d

2
) and we must 

consider two sub-cases depending on the type of 
the feature pair

 Let vector u = sgn(d
2
)(V

2
E − V

1
E) represent the edge 

E pointing out of the negative half-space to the 
positive half-space of β

 If XY is a ”VE” pair, the local test depends on the 
sign of the (X − p) projection onto the edge vector 
u, i.e. +sgn(uT(X − p))



    

Edge Clipping

 If XY is a ”EF”pair, there are another two sub-
cases.

 If p lies above the face Y, the local test depends 
on the angle between edge vector u and the face 
normal vector n

 If p lies below the face Y we use the similar local 
test, but mark opposite features

 Therefore the final local test (handling both sub-
cases) can be written as: - sgn(nTu)sgn(d

s
(p,Y))



    

Edge Clipping Cases
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ClipEdge Algorithm



    

Signed
Distance
Maps

for collision detection



    

Signed Distance Map 

 Signed distance map: SDM
N
(V) is N×N×N regular 

grid, where each unit cell with a center point p 
stores the signed distance to the closest point on 
the surface of some volume V.

 This signed distance is a combination of a sign 
function sgn

V
(p) and the unsigned distance 

function d(p, V) w.r.t. V.

 SDM
N
(V) = { sgn

V
(p)d(p,V) | p = (i + 0.5, j + 0.5 , k + 0.5 )           ∧

                                                  1 ≤ i, j, k ≤ N }



    

Signed Distance Maps

 Signed distance maps (SDM) become recently a 
popular technique for approximate collision 
detection and distance computation. 

 Pros: Efficient overlap test, fast contact 
generation and penetration depth computation 
for arbitrary shaped, non-convex objects with 
complex and highly tessellated geometry

 Suitable even for real-time applications as games

 Cons: Huge amount of memory necessary for 
massive scenarios and a large number of 
redundant (unnecessary) contacts generated 
during the collision detection



    

Distance Map Construction

 Brute force construction
 For each grid cell we need to compute the distance of its center 

to each surface triangle and store the shortest distance
 Assuming N is the grid size and M is the number of triangles, we 

have to call the primitive point-to-triangle distance function 
N×N×N×M times

 Other Efficient Methods
 Lower-Upper Bound Tree (LUB-Tree)
 Characteristic/Scan Conversion (CSC)
 Chamfer and Vector Distance Transform (CDT, VDT)
 Fast Marching Method (FMM)



    

Proximity Queries with SDM

 Performing proximity queries using SDM involves 
simple point location tests.

 The key idea is to sample several points on the 
surface and store it together with the SDM.

 During the collision detection sample points of one 
object are transformed into the local space of the 
other object and are ”looked-up” in the SDM of the 
other object and vice versa.

 Surface points located inside other object (lie 
under the zero level (SDM

A
(p

B
) ≤ 0)) are used to 

create necessary contact information (contact 
point, contact normal, penetration depth, etc.)



    The End


