Narrow Phase

AL
\

icnl 06

ion Detect

IS

Coall

Lecture 06 Outline

* Problem definition and motivations

* Proximity queries for convex objects
> Minkowski space, CSO, Support function

* GJK based algoritnms (GJK, EPA, ISA-GUK)
* Voronoi Clipping Algorithm (V-Clip)
* Signed Distance Maps for collision detection

* Demos / tools / libs

Narrow-Phase Collision Detection

* Input: List of pairs of potentially colliding objects.

* Probleml: Find which sub-objects are really
intersecting and remove all non-colliding pairs.

* Problem2: Determine the proximity/contact
information, i.e. exact points where objects are
touching (interpenetrating), surface normal at
that contact point and separating / penetrating
distance of objects.

* Problemad: Recognize persistent contacts, i.e.
topologically equivalent contacts from previous
time steps

Narrow-Phase Collision Detection

* Qutput: List of contact regions with necessary
proximity information between colliding objects

* Strategies:
> Simplex based traversal of CSO - GJK based algorithms
> Feature tracking base algorithms as Lin-Canny or V-Clip
> Signed Distance Maps for collision detection
> Persistent clustering for contact generation and reduction

Minkowski Space

* Convex Bounded Point Set

> A set S of points p € R is called convex and bounded if for
any two points a and b the line segment ab lies entirely in S
and the distance |a - b| is finite (ot most B)

> g c BEOEE 0] = (1-tla+tb €S A |a-b| S must be continuous, but needs not to be smooth

b 3

Convex set Non-convex set

Minkowski Space

* Given any two convex objects A and B we define
Minkowski Sum, Difference and Translation as

* Minkowski Sum A © B
>sAeB={a+b|la= A/ b < B}

* Minkowski Difference A ©B (known as CSO)
>AGB=A®(B)={a-b|aE A Ab B}

* Minkowski Translation A @1
>Aot=Ao {t}={a+t|a E A}

Minkowski Space

Translation

Difference

Gis
-
i
L4 it
-
-
-
h
-

Touching Vectors

* Touching Contact

> Two convex objects A and B are in touching contact, iff their
intersection (as a point set) is a subset of some (contact)
plone B. Formally: ANB C B

* Touching Vector
> The touching vector t,, between two convex objects A and B

is any shortest translational vector t moving objects into the
touching contact.

> 1, St FANBEUSeE it = R° A [t] =d,,)

* Touching Distance
> Touching distance d, is the length of touching vector t,..

> d . = min { |t] [PARNBERiSeRBFAR: ‘= R

Touching Vectors and C50O

Touching vector Penetration vector Separation vector

Touching Vectors

* Objects are in close proximity if their touching
distance is smaller than a defined threshold

* If objects are disjoint touching vector (distance) is
usually called as separation vector (distance)

* [f objects are intersecting touching vector
(distance) is usually called as penetration vector

(Jepth)

* Separation vector is unique. Penetration vector is
usually not unique (co-centric circles)

Support Set and Boundary

* Support Set

> The set of points from a convex object C which have a

minimal projection onto a direction axis d is the support set
of C

> S8 =i e = min{ d'c [c = C}}

* Support Boundary

> The set of all support points from a convex object C with
respect to any direction d is the boundary of C

»0(C) = {lp | gl S =ik |

Support Set and Boundary

Support Scenario Support Planes

Boundary

g,
S o,

..............
,,,,,,,,,,,

Projection Axis -V +v Projected Line Segment

Touching Vectors and Boundary

* Touching Vector Theorem

> Any translational vector t moves two convex objects Aand B
into touching contact, iff it lies on the boundary of their CSO

>AN(Bet) CBSt € dAOB)

* This theorem can simplify the definition of

touching contact, vector and distance, by
replacing (AN (Bet) C B) with thet € (A ©B)

>d, =min { |[t] |t E3(A©B)}
>t € {t|tED(ASB) A [t] =d,]

Contact Region

Contact
Points

Support
Planes

Contaoct Plane

Contact
Region

Contact Region

* If objects are in touching contact (t,, is zero), their
iNntersection simply forms the contact region

* If objects penetrate or are disjoint (t,, is non-zero)

contact region is constructed as follows
> Compute two support sets 5,"** and S, for AandB w.r.tt,

> Project both sets onto touching vector t,, and take median
> Form contact plane with median as origin and normal as t,,

> Project both support sets onto contact plane and take their
(ideally) intersection as contact region

Gilbert - Johnson - Keerthi Algorithm

* Key idea of all GJK based algorithms:
iterative search for the touching vector in CSO

* Strategy: Perform a descent traversal of the CSO
surface to find the closest point to the origin

* Problem: Naive construction and traversal of CSO
is expensive and slow

* Solution: Simple support function can select
proper support points on CSO and thus speed up
the traversal to an almost constant time assuming
coherent simulation.

Support Function

* Support function support(C,d) =5°_ of a convex

object C w.r.t. direction d simply returns any

support point from the respective support set 5°_

* Support Function Operations
> Assuming support(A, d) € S°, and support(B, d) = 5°, we
define the support functions as follows
> support(-B, d) = -support(B,-d) € S°,
> support(A @B, d) = support(A, d) + support(B, d) = S°,
> support(A B, d) = support(A @ (-B), d)
= support(A, d) + support(-B, d)
= support(A,+d) - support(B,—d)

Proximity GJK Algorithm

* The traversal is done by iteratively constructing a
sequence of simplices in 3D
> point or line or triangle or tetroahedron

* [N each iteration newly created simplex is closer to
the origin as the one in previous iteration

* New simplex is created by
*1) Adding a support point to the former simplex

*2) Taking the smallest sub-simplex which contains
the closest point to the origin

Proximity GJK Algorithm

Proximity GJK Algorithm

Proximity GJK Algorithm

Proximity GJK Algorithm Algorithm

Proximity GJK Algorithm

In: Convex objects A. B and initial simplex W
Out: Touching vector w

function PROXIMITYGJK(A, B. W) : w

1: {v, §} < {1, 0}

2: while (|v][? =% > ¢) do

3 v «— CLOSESTPOINT(W)

4: W «— SUPPORT(A & B,v) = SUPPORT(A, +v) — SUPPORT(B, —v)
5 W «— BESTSIMPLEX(W, w)

6 if (|[W|=4) then return PROXIMITYEPA(A,B, W) ;

T

i s
F i if (VlW > ﬂ:l then §? — max {(ﬁ'?? %}
8: end

9: return w
end

Computing Support Function

* Searching for the support vertex w heavily
depends on the representation of the convex
objects Aand B

*For a simple primitives it can be computed directly

*For convex polytopes

> Naive approach is to project all vertices onto the direction
axis and take any one with the minimal projection

> if we consider a coherent simulation we can use a local
search sometimes called as “hill climbing” and find the
support vertex in almost constant time

Hill Climbing Support Function

* For convex polytopes do a local search to “refine”
the support point from previous simulation state

In: Convex polytope A, initial support vertex w and the direction vector d

Out: New support vertex with minimal projection w

function SUPPORTHC(A.d.w) : w

1: {p. Found} — {d"w, false}

2: while not Found do

3 Found «— true

4 foreach w' in NEIGHBOURS(w) do

5: if (d'w’ < p) then {u. w, Found} — {d*w’. w'. false};break
6 end

7: end

8: return w
end

Simplex Refinement

* Problem: Given a simplex and new vertex form
new simple by adding the vertex and select sub-
simplex closest to the origin

* Bad solution: The simplex can be done by solving a
system of linear equations (slow, numeric issues)

* Good solution: Form new simplex and test in which
external Voronoi region the origin lies.

* The selected Voronoi region directly shows us
which sub-simplex is the desired (closest) one

Voronoi Simplex Refinement

ex

A

s

A0
et
s

Line Simplex

Triangle Simplex

Voronoi Simplex Refinement

* Empty Simplex: A vertex simplex {w} is formed

> The smallest simplex, which contains the closest point to the
originis {w} (case 0)

* Vertex Simplex: An edge simplex {W1,w} is formed
> [t has 2 vertex regions {W1, w} and one edge region {el}

> Since WI lies on support plane which is perpendicular to the
support axis (vector w) origin can not be in the region of W1

> Thus we check only regions of w and el by projecting -w onto
the edge el (case 1)

Voronoi Simplex Refinement

* Edge Simplex: A face simplex {W1,W2,w} is formed
> [t has 3 vertex regions, 3 edge regions and 2 face regions
> The origin can be only in {w, el, €2, n1} regions

> Construct Voronoi planes with normals {el, e2, ul, vl} and
test whether the origin is above or below these planes, i.e.
compare signs of -w projections onto these normals

* Face Simplex: A tetrahedron simplex {W1,W2,W3,
w} is formed

> A tetrahedron has 4 vertex regions, 4 face regions, 6 edge
regions and 1interior region (T)

> Origin can lie only only in regions {w, el, e2, €3, n1, n2, N3,T}

> Construct Voronoi planes with normals {el, e2, €3, nl, N2, N3,
ul, u2, ud, vi, v2, v3} and test sign -w projection onto normals

In: Simplex W and new point on CSO surface w

Out: New smallest simplex W containing w and the closest point to the origin

function BESTSvMpPLEX (W, w)

e 8- Bl R

10:
11:
12;
13:
14:
15:
16:
17:
18:
19:
20;
21:
22;
23:
24:
25:
26:
27:
28:
29;
30:
end

d—0-w
e — W, —w;
n; +— e&; X eq.
n; — e; X 1Nj;
V] +— 1] X e
switch |11 do
case (/
return {w}
end
case]

: W

ez — W3 — w;
g +— 85 X e3!
Uz — &3 X 1o
Vo +— Ilo X e3:

if (dTe; > 0) then return {w}

if (dTe; < 0) then return {W;, w}

end
case 2

if (dTe; < 0)
if (dTe; > 0)
if (dTe, > 0)

if (dTu, < 0)

end

case 7
if (dTe; < 0)
if (dTe; > 0)
if (dTe; > 0)
if (dTe3 > 0)
if (dTn; > 0)
if (dTn;y > 0)
if ’.:dTIl;.g =0

if (d™n; < 0)

)
end

end

(_dTe;g < () then
(dTu; > 0) then
(dTv, > 0) then
(dTv, < 0) then

(dTe; <0) A
[dTlll >0) A
(dTuz > 0) A
(dTllg > {]l M

(
(
(dTu; <
(

83 +— VV;.; - W,

ng — ez X e
U3 < €3 X g,
V3 +— I3 X e

/* empty

/* vertex

/* edge

simplex

simplex

simplex

return {w}
return {W;, w}
return {W,, w}

return {W,;, Wy, w}

) then

/* face simplex

(_dTe;.; < 0) then return {w}
(clTVp, > () then
(d¥v; > 0) then
(dTvy > 0) then
(dTv, < 0) then
(dTv, <0

(dTvs < 0) then
(dTng < 0) then

return { W, w}

return {Wo, w}

return {Wj, w}

return {W; Wy, w}

return {W,, W;, w}

return {W3z, W, w}
{(W,. Wy, W3, w}

return

*/

Closest Point on Simplex

* Problem: Given (0 or 1 or 2 or 3) simplex
{WIL,W2,W3} find the closest point to the origin

* Empty Simplex: Return 0
* Vertex Simplex: Return W1

* Edge Simplex: Return the closest point on line
{WL,W2} to the origin.

> No need to check other regions (eg. vertex W1 region etc.)

* Face Simplex: Return the closest point on plane
{W1L,W2,W3} to the origin.

> No need to check other regions (eg. vertex W1 region etc.)

Closest Point Algorithm

In: Simplex W
Out: Closest point on simplex to the origin v

function CLOSESTPOINT(W) : v

d — W, - W,

n— (Wy—-W;)x (W3- W)

switch |1V do
case () return O ; /* empty simplex
case] return Wi ; /* vertex simplex
case 2 return W; — %d . /* edge simplex
case 7 return ‘i%n; /* face simplex

end

GJK Overlaop Test

* Incremental Separating-Axis GJK (ISA-GJUK)
> A subtle modification to the proximity GJK
> Descent overlap test for convex objects
> [teratively searches for some separating axis
> Average constant time complexity in coherent simulation

* Principle: Similar traversal to Proximity GJK

> Reports overlap: When the best simplex is tetrahedron

> Reports no-overlap: When the signed distance of the support
plane to the origin is positive

> Vw = VI support (A B, v) = V! support(A,+v) - v support(B,-v) >0

ISA-GJK Algorithm

In: Convex objects A, B and initial Simplex W
Out: Overlap check: (true/false)

function OVERLAPGJK(A. B.W) : bool
{v,w} — {1, 1}
while (viw < 0) do
v «— CLOSESTPOINT(W)
w — SUPPORT(A & B,v) = SUPPORT(A, +v) — SUPPORT(B, —V)
W «— BESTSIMPLEX(W,w)
if (|[W| =4) then return true : /* intersection */
end
return false

| Clipping Algorithm

Voronoi

External Voronoi Regions

* [nterior Set:

> The set of all interior points int(C) of a convex polytope C is
the intersection of negative half-spaces formed by all faces
of C (surface points are not included)

* int(Cl e sic.F) <0 \F = C}

* Distance:

> The distance d(c,X) between a feature X and some point c is
the minimum distance between ¢ and any point of X

* d(c,X) = mini <5 c " Hae D |

External Voronoi Regions

* Signed Distance
> The signed distance d_(c, F) between a point ¢ and a plane F,
defined by a unit normal n_and a reference point o_is the
projection of the reference vector (c - o.) onto planes normal

* Js(c, B~ ni{cision)

*Having two incident features X, Y: if X has a lower
dimension than Y, then X must be a subset of Y and
therefore the distance of any point c to X is less
thaon or equal to Y

*XNY A dim(X) <dim(Y) 2 X C Y = d(c,X) <d(c,Y)

External Voronoi Regions

* External Voronoi Region

> The Voronoi region VR (X) of a feature X on some convex
polytope C is a set of external points which are closer (<) to X
than to any other feature Y in C

> VRIXIEREERR@ (e X) < d(c,Y) AY =C}

* External Voronoi Plane

> The Voronoi plane VP (X,Y) of two incident features X and Y is
the plane containing the intersection of their Voronoi regions.

>VP(X,Y) =B A VR(X) NVR(Y) C B

* [nter-feature Distance

> The inter-feature distance d(X, Y) between features X and Y
is the minimum distance between any points x & Xandy € Y

> d(X,Y) =min { Syl E=0 Sy =]

External Voronoi Regions

Face Voronoi Region

Edge Voronoi Region

Voronoi Region Theorem

*Let X € Aand Y € B be a pair of features from
disjoint convex polytopes A and B.

*Letx € Xandy € Y be the closest points between
Xand Y

* Points x and y are the (globally) closest points
between A and B iff x € VR(Y) /Ay € VR(X)

Voronoi Region Theorem

V-Clip Algorithm

* Key idea of the V-Clip algorithm is an efficient
search for two closest features.

* Obviously an exhaustive search is a very
expensive solution

* Fortunately the following Voronoi Region Theorem
allows as to find the global minimum of the inter-
feature distance, by performing usually only a
few iterations of a local search

V-Clip Algorithm

* Given two convex polytopes A, B and any two
features X € A,Y &B

* [n each iteration V-Clip checks if they satisfy the
Voronoi Region Theorem.

> [f they don't, it changes X and Y to some (usually incident)
features X' and Y/, so that either the sum their dimensions or
the inter-feature distance strictly decreases.

> Assuming a finite number of features the algorithm can
never cycle

> [f we initialize X and Y with the closest features from the
previous time-step and the simulation is coherent, then we
probably need only a few iterations to find new closest
features.

In: A pair of convex polytopes A, B and respective initial features X, Y
Out: A Separation vector w, or [} if penetration occurred

function V-CLip(A. B. X.Y) : w
1: while {true) do
switch PAIRTYPE(X.Y) do
case V'V type : /% Vertex-Vertex
if CLIPVERTEX(X,Y.{ YE | E € Epces(Y) }) then continue
if CLIPVERTEX(Y, X,{ XE | E € EDGE5(X) }) then continue
return X — Y
end
case VE type : /* Vertex-Edge
if CLIPVERTEX(X.Y.{ VY'Y, VJYY, YFY. YFY }) then continue
if CLIPEDGE(Y,X,{ XE E € EDGEs(X) }} then continue
eV =V

B o =] & o ke Wk

[
= o

s W —NE Y)
return X — | V] + fuj
\ utu

end

case VF type : /* Vertex-Face
if CLIPVERTEX(X.Y,{ EY, VFE, VfE | E € EpGes(Y) }) then continue
if CrirFace(Y, X, A) then continue

iy =X}
—11J

return X — (X +

\
.

Il[11

end
case FE type : /* Edge-Edge

if CLIPEDGE(X.Y,{ VY'Y, VY, YFY, YFY }) then continue

if CLIPEDGE(Y, X, { V¥ X, Vi*X, XF{*, XF;* }) then continue

fuf, w0 W, W)
b Y ¥

X

3
% 1 3

{nx. n“-} — {['u'Y X1 -_:I ® 1 (u
’ J'L"\' |:11Y':|_[_|:'|,-'1Y — l'IX:i
return O+ e

) *u

end
case FF type : /* Edge-Face */
if CLiPEDGE(X.Y,{ EY, VFE, VFE | E € Epges(Y) }) then continue
{d1, da} — { da(VFX.Y), da(V5¥.Y)}
if {(sgn(dids) < 0) then ¥ —{; continue
if (|dy| < |d3|) then X |L_-1.\' else X — 'L"zx
continue
end
case EV, F'V, FE type : SWAP(X,Y); Swar(A,B); continue ; /* Swap Cases */
end
if (Y =) then return {

end

Vertex Clipping

* Given a vertex V from one object, some "old”
feature N from another object and a set of
feature pairs S_

* The vertex clipping simply marks X (Y) if the
vertex V lies above (below) the VP (X,Y) for each
feature pair XY € 5

> First it clears all features among SN (ClearAll(S,))
> Next it tests the side (w.r.t. Voronoi plane) of V and mark
"further” features.

> Finally it updates N with some unmarked feature
(UpdateClear (N, SN)) and returns true if N was changed.

Vertex Clipping Cases

V/E

E/F

V/E

E/F

ClioVertex and UpdateClear

In: A vertex V, a feature NV to be updated and a set of clipping feature pairs Sy
Out: Test if the feature N was updated (true/false)

function CLIPVERTEX(V, N,Sy) : bool
CLEARALL(Sn)
foreach XY in Sy do
Test — sgn(ds(V, VP(X.Y)))
if (Test > 0) then MARK(X) else MARK(Y')
end
return UPDATECLEAR(N, Sy)

In: A feature N to be updated and a set of clipping feature pairs S
Out: Test if the feature N was updated (true/false)

function UPDATECLEAR(Y, S,) : bool

1: M« N; /* store old feature */

2: foreach XYin S, do

3 if (X is “clear”) then N < X; break; /* update old to closest feature */
4: if (Y is “clear”) then N < Y; break; /* update old to closest feature */
5

6

end
return N != M, /* true if feature changed */

end

Edge Clipping

* Toke an edge E, the "old” feature N, a set of
respective feature pairs 5, and perform a

sequence of local tests to properly mark
"further” features

«Let d, d, represent signed distances of the
endpoint vertices V=, V " to the Voronoi plane B =
VP (X,Y) of a particular feature pair XY & S

* [f both vertices lie on the same side of the clipping
plane (sgn(dd,) >0), we simply mark the feature

of the opposite side as in vertex clipping

Edge Clipping

« If vertices lie on different sides (sgn(dd,) <0),

edge E intersects the clipping plane in some point
o= (1-A)VE+AVE where A =d,/(d-d,) and we must
consider two sub-cases depending on the type of
the feature pair

»Let vector u =sgn(d,) (V.F - VF) represent the edge
E pointing out of the negative half-space to the
positive half-space of B

*If XY isa "VE” pair, the local test depends on the
sign of the (X — p) projection onto the edge vector
U, i.e. +sgn (U (X - p))

Edge Clipping

*[f XY is a "EF "pair, there are another two sub-
cases.

*[f p lies above the face Y, the local test depends
on the angle between edge vector u and the face
normal vector n

*[f p lies below the face Y we use the similar local
test, but mark opposite features

* Therefore the final local test (handling both sub-
cases) can be written as: - sgn(n'u)sgn(d_(p,Y))

Edge Clipping Cases

............ A fiihne, E) F T

d2S0 +

j / i / i

<90°
7 >900 u/
ey :
"7 +)

\ 72 E/F \4 E i E F

V/E

ClioEdge Algorithm

In: An edge FE. a feature NV to be updated and a set of clipping feature pairs Sy
Out: Test if the feature N was updated (true/false)

function CLIPEDGE(E, N,Sy) : bool

1: CLEARALL(SN)

2: foreach XY in Sy do

3 B—VP(X,Y)

4 {di, do} — { ds(ViE.), ds(VE.B) } /* signed distances to 3 */
5 {p, u} — { E(d2/(d1 — d2)), sgn(d2)(VL — V&) }

6: if (sgn(didz) > 0) then Test — sgn(d;)

7 if (sgn(d;d;) <0 A XY is "VE”) then Test «— +sgn(u* (X — p))

8 if (sgn(didy) <0 A XY is "EF”) then Test — —sgn(n'tu)sgn(dy(p,Y))
9 if (Test > 0) then MARK(X) else MARK(Y')
10: end
11: return UPDATECLEAR(N, Sy)

end

Sighed
Distance

for collision detection

Sighed Distance Maop

» Signed distance map: SDM, (V) is NxNx=N regular

grid, where each unit cell with a center point p
stores the signed distance to the closest point on
the surface of some volume V.

* This signed distance is a combination of a sign
function sgn, (o) and the unsigned distance

function d(p, V) w.r.t. V.

> SDM (V) = { sgn, (p)d(p,V) | o= (i +0.5, j+ 0.5,k +0.5) A
1<i, j,k <N}

Signhed Distance Maops

* Sighed distance maps (SDM) become recently a
popular technique for approximate collision
detection and distance computation.

* Pros: Efficient overlop test, fast contact
generation and penetration depth computation
for arbitrary shaped, non-convex objects with
complex and highly tessellated geometry

* Suitable even for real-time applications as gomes

* Cons: Huge amount of memory necessary for
massive scenarios and a large number of
redundant (unnecessary) contacts generated
during the collision detection

Distance Map Construction

* Brute force construction

> For each grid cell we need to compute the distance of its center
to each surface triangle and store the shortest distance

> Assuming N is the grid size and M is the number of triangles, we
have to call the primitive point-to-triangle distance function
NxNxN=xM times

* Other Efficient Methods

> Lower-Upper Bound Tree (LUB-Tree)

> Characteristic/Scan Conversion (CSC)

> Chamfer and Vector Distance Transform (CDT, VDT)
> Fast Marching Method (FMM)

Proximity Queries with SDM

* Performing proximity queries using SDM involves
simple point location tests.

* The key idea is to sample several points on the
surface and store it together with the SDM.

* During the collision detection sample points of one
object are transformed into the local space of the
other object and are "looked-up” in the SDM of the
other object and vice versa.

* Surface points located inside other object (lie
under the zero level (SDM, (p,) < 0)) are used to

create necessary contact information (contact
point, contact normal, penetration depth, etc.)

