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Inductive reasoning

De�nition (Induction)

Let Γ and ∆ = ∆+ ]∆− be KBs (sets of formulae) in some
language L. A set of formulae Φ in L is an inductive generalization
of ∆ (with background theory Γ) if:

Γ 6|= ∆+

Γ ∪∆ is consistent

Γ ∪ Φ |= ∆+

Γ ∪ Φ ∪∆− is consistent

The task is to induce a generalization Φ that allows to derive the
positive observations ∆+ from the background theory. Negative
observations must not be derived. Hence Γ ∪ Φ must be consistent
with ∆− which contains each negative observation ¬φ.
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Example

∆+ =

reward(card(4,♠))←
reward(card(7,♠))←
reward(card(2,♣))←

∆− =

¬reward(card(5,♥))←
¬reward(card(jack ,♣))←
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Example (cont.)

Γ =

num(card(X ,Y ))← X ≤ 10

�g(card(X ,Y ))← X ≥ jack

black(card(X ,Y ))← Y = ♠ ∨ Y = ♣
red(card(X ,Y ))← Y = ♥ ∨ Y = ♦

2 < 3←
· · ·

king < ace ←
X < Z ← X < Y ,Y < Z

X ≤ Y ← X < Y ∨ X = Y

X ≥ Y ← Y ≤ X
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Example (cont.)

Possible generalizations:

Φ1 =

reward(X )← num(X ), black(X )

Φ2 =

reward(card(X ,Y ))← (X = 4,Y = ♠) ∨ (X = 7,Y = ♠)

∨ (X = 2,Y = ♣)

Φ3 =

reward(card(X ,Y ))← (X 6= 5 ∨ Y 6= ♥) ∧ (X 6= jack ∨ Y 6= ♣)

(And many others. . . )
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Generic Algorithm

Often large number of generalizations can be found, not all are
optimal

Generic inductive algorithm searches through the space of
possible generalizations and stops when an optimal one is
found

The problem is to de�ne which generalizations are optimal

Out of all reasonable generalizations we prefer those which are
least-general

Too general (Φ2) but also unreasonably speci�c (Φ3)
generalizations are not good
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θ-subsumption

De�nition (θ-subsumption)

Given two clauses (sets of literals) c1 and c2 and a subsumption θ,
we say that c1 θ-subsumes c2 if c1θ ⊆ c2.

We also say that c1 is induced from c2 and that it is more
general (and contrary c2 is more speci�c) of the two clauses.
We denote this by c1 ≤ c2.

θ-subsumption allows us to characterize optimal
generalizations a least in limited cases.
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θ-subsumption (cont.)

De�nition (Generalization)

Given a set of clauses C , a clause c is a generalization of C if
c ≤ e for all e ∈ C .

De�nition (Weakest Generalization)

Given a set of clauses C , a clause c is weakest generalization of C
if e ≤ c for all other generalizations e of C .
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Computing weakest generalizations

Some auxiliary de�nitions:

De�nition (Comparable literals)

Two literals L1, L2 are comparable if they use the same predicate,
they are of the same arity, and polarity. That is, if
L1 = P(u1, . . . , un) and L2 = P(v1, . . . , vn) where P is possibly
negated.

De�nition (Co-occurring terms)

A pair of terms t1, t2 is co-occurring in comparable literals
L1 = P(u1, . . . , un) and L2 = P(v1, . . . , vn) if t1 = ui and t2 = vi
for for some i ∈ {1, . . . , n}.
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Computing weakest generalizations (cont.)

Algorithm for weakest generalization of clauses c1, c2

1 c := ∅, θi := ∅ for i = 1, 2
2 for every pair of comparable literals L1, L2 of C1 and C2 do:

1 call literal weakest generalization on L1, L2, θ1, θ2 with

result L, θ′
1
, θ′

2

2 θi := θ′
i
for i = 1, 2

3 c := c ∪ {L}
3 return c
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Computing weakest generalizations (cont.)

Algorithm for literal weakest generalization of comparable
literals L1, L2 using initial substitutions θ1, θ2

1 for every pair of terms t1, t2 co-occurring in L1, L2 do:
1 if X/t1 ∈ θ1 and X/t2 ∈ θ2 for some variable X ,

Li := Li{ti/X} for i = 1, 2

2 for every pair of terms t1 6= t2 co-occurring in L1, L2 do:
1 let Y be a new variable w.r.t. θ1, θ2
2 Li := Li{ti/Y } for i = 1, 2
3 θi := θi ∪ {Y /ti} for i = 1, 2

3 return L1, θ1, θ2
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Computing weakest generalizations (cont.)

Example. . .
(Please consult your notes)

Martin Baláº, Martin Homola Lecture 10: Induction



Computing weakest generalizations (cont.)

The algorithm always produces weakest generalizations which may
however contain some redundant literals and can be further
reduced:

De�nition (Equivalent clauses)

Clauses c, d are equivalent (denoted c ∼ d) if both c ≤ d and
d ≤ c .

De�nition (Reduced clause)

Clause c is reduced if for every clause e s.t. e ⊆ c and e ∼ c we
have e = c .
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Computing weakest generalizations (cont.)

Algorithm for reduced clause of clause c

1 while there is L ∈ c and a substitution σ s.t. cσ ⊆ c \ L do:
1 c := cσ

2 return c
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Final remarks

Theta subsumption allows us to �nd suitable generalizations in with
only positive observations (set of clauses C ) with no background
knowledge. More general cases are less straight forward for
examples of some more general methods see �efránek (2000) pp.
188�194.
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