
    

Juraj O
nderik | onderik@sccg.sk

Rigid Body 
Dynamics

Lesson

08



    

Lesson 08 Outline

 Problem definition and motivations

 Dynamics of rigid bodies

 The equation of unconstrained motion (ODE)

 User and time control

 Demos / tools / libs



       Rigid Body  Concepts



    

Concept of Rigid Bodies

 Assumption of Rigidity: The shape of rigid body 
never undergoes any deformation during 
simulation

 Motion concept: Due to rigidity overall motion of 
body is a composition of

 1) Linear motion of the center of mass (CoM)

 2) Angular motion - rotation of body shape around 
center of mass



    

Position and Orientation

 Position is represented as vector c = (x, y, z)

 Orientation can by represented using:

 1) Euler Angles: q = (φ, θ, ψ)
 This is the minimal 6 (3+3) DOF representation of body.
 Problems of gimbal lock (non-uniqueness)

 2) Rotation Matrices: R = (R
i,j
)  R∈ 3x3

 Overdetermined representation. Must by orthogonalized.

 3) Unit Quaternions: q = (x, y, z, w)
 7 (3+4) DOF representation solved by simple normalization. 

Very suitable for angular velocity integration



    

Linear and Angular Velocity

 Linear velocity v(t) is simply the time derivative of 
position
 Formally: v(t) = c'(t) = dc(t)/dt

 Angular velocity ω(t) is a vector parallel to 
rotational axis with the length equal to spin velocity
 Spin velocity = total radians body spin around rotational axis 

per second.
 Formally: q'(t) = 0.5 Q ω(t)    (see later for details)



    

Linear and Angular Velocity

 Assume some body point p = c + r
 Local displacement r = a + b can be 

decomposed into axis parallel “a” and 
axis perpendicular “b”

 Current velocity u of point p is
 Perpendicular to rotation axis
 Proportional to length of angular  

velocity |ω| and distance from rotation 
axis |b|

 Formally |u| = |ω||b| → u = ω x b

 Since ω x a = 0

 u = ω x b = ω x a + ω x b = ω x r (= r')

ω

a

b
u

c

p

r = a+b



    

Linear and Angular Velocity

 Cross product matrix ax for vector a = (a
x
, a

y
, a

z
) is 

 antisymmetric 3x3 matrix

 Rotation matrix R is a orthonormal 3x3 matrix

R=R x R y R z =Rxx R xy R xz

R yx R yy R yz

R zx R zy R zz


a ×  b=a×  b= 0 −az a y
a z 0 −ax
−a y a x 0 bxby

bz



    

Linear and Angular Velocity

 Time derivative of rotation matrix R with respect to 
angular velocity ω is (assuming r' = ω x r = ωx r)

 Time derivative of orientation quaternion 
q=(x,y,z,w) is

 Q is 4x3 “quaternion matrix” 

q̇= ẋẏżẇ=12 
w −z  y
z w −x
−y x w
−x − y −z x

y

z
=12Q

Ṙ=Ṙ x Ṙ y Ṙ z=× R x × R y × R z=× R x R y R z=× R



    

Center of Mass

 Consider rigid body as a collection of particles 
with their positions p

i
 and masses m

i

 Center of mass “c” is a weighted average of all 
particles

 where M = Σ mi is total mass of body

 Relative position ri of i-th particle satisfies pi = c + ri

 Current i-th particle position is pi = c + R r0i 
 R is current rotation matrix of body
 r

0i
 is initial local-space position of i-th particle

c = ∑ mi pi
∑ mi

= ∑ mi pi
M



    

Linear and Angular Momentum

 Assuming each particle has its own mass mi and 
velocity ui = ω x ri + v, we define its linear 
momentum “Pi” and i-th angular momentum ”Li” as
 Pi = mi ui

 Li = ri x Pi = miri x ui 

 Summing up Pi and Li over all particles we get total 
linear momentum “P” and angular momentum “L”

 P = Σ Pi = Σ mi ui = Σ mi (ω x ri + v) = … = M v

 L = Σ Li = Σ mi ri x ui = Σ mi ri x (ω x ri + v) = … = J ω
 where matrix J is the current inertia tensor



    

Mass and Inertia Tensor

 Total mass M and inertial tensor J are defined as

 Unlike scalar mass M, inertia tensor J is time dependent

 Initial inertia is J
0
 = -Σ mi r0i

x r
0i

x 
 Bodies never deform, thus current inertia can be expressed 

in terms of initial inertia J
0
 and current rotation matrix R

 J = RJ
0
RT and J-1 = RJ-1

0
RT

M = ∑ mi

J = −∑ mir i
× r i

× = ∑ mir iy
2 r iz

2 −r ix r iy −r ixr iz
−r iy r ix r ix

2 riz
2 −r iy riz

−r iz r ix −riz r iy r ix
2 r iy

2 



    

Mass and Inertia Tensor

 J
1
 = Inertia tensor of sphere with radius r and 

mass m

 J
2
 = Inertia tensor of solid box with mass m and 

width w, height h and depth d

J1 =  2mr
2

5
0 0

0 2mr 2

5
0

0 0 2mr2

5
 J2 = 

m
12

h2d 2 0 0

0 m
12

w2d 2 0

0 0 m
12

w2h2



    

Mass and Inertia Tensor

 Translated inertia tensor by offset r is

 J = J
0
 + m(rTr 1 – rrT)

 where 1 is 3x3 identity matrix and r is a column vector, ie. 
transposed rT = (r

x
, r

y
, r

z
) is row vector, thus

 rTr (inner or dot product) is scalar
 rrT (outer product) is a 3x3 matrix

 Given body with n solid parts with mass m
i
, center 

of mass c
i
 and inertia tensor J

0i
, total body

 Mass m = Σ mi 

 Inertia J = Σ Ji = Σ (J
0i
 + m

i
(c

i
Tc

i
 1 – c

i
c

i
T))

 Center of mass c = (Σ mi ci
) / (Σ mi)



    

Linear and Angular Acceleration

 The time derivative of inertia J (and J-1) is

 J' = (RJ
0
RT)' = R'J

0
RT + RJ

0
R'T = … = ωx J - J ωx

 J'-1 = (RJ-1
0
RT)' = R'J-1

0
RT + RJ-1

0
R'T = … = ωx J-1 - J-1 ωx

 Linear acceleration “a” is defined as

 a = v' = (M-1P)' = M-1P' = M-1f
 Where f is force - time derivative of linear momentum P 

 Angular acceleration “α” is defined as 

 α = ω' = (J-1L)' = J'-1L + J-1L' = … = 0 - J-1ωxJω + J-1τ
 Where τ is torque - time derivative of angular momentum L



    

Force and Torque

 Force fi and torque τi of i-th particle are

 fi = miai (i-th force)

 τi = ri x fi = miri x ai (i-th torque)

 Summing up over all particles we get the famous 
Newton-Euler equations for total force and 
torque

 f = Σfi = Σmiai = … = M v' = P'

 τ = Στi = Σmiri x ai = … = Jω + ωx Jω = … = L'



    

Summary of Rigid Body Concepts

Kinematical Properties Dynamical Properties

lin Position c(t)  ∈ R3x1 Mass M  ∈ R1x1

ang Orientation q(t)  ∈ R4x1 Inertia Tensor J(t)  ∈ R3x3

lin Linear velocity v(t)  ∈ R3x1 Linear Momentum P(t)  ∈ R3x1

ang Angular velocity ω(t)  ∈ R3x1 Angular Momentum L(t)  ∈ R3x1

lin Linear acceleration a(t)  ∈ R3x1 Force f(t)  ∈ R3x1

ang Angular acceleration α(t)  ∈ R3x1 Torque τ(t)  ∈ R3x1

 We can summarize main physical properties 
(quantities) of rigid bodies as either
 Kinematical (pure geometrical, mass “independent”)
 Dynamical (physical, mass “dependent”)



    

Rigid Body Equation of Motion

 The rigid body equation of unconstrained motion 
can be summarized as the following ODE

 Where auxiliary variables are 

d
dt

x t  = d
dt c t 

q t 
Pt 
Lt  =  v t 

1
2

Qt t 

f t 
t 


Q t  = qw t  −qz t  q y t 

qz t  qw t  −q x t 
−q yt  qx t  qw t 
−qx t  −q y t  −qz t 

 v t  = M−1P t 
t  = J−1t Lt 

J−1t  = R t J0
−1 RTt 



    

 User and
 Time control



    

User and Time control

Presentation

Collision

Simulation

frame

step

sub-step

t0

 According to the time control of the simulation, we 
can split the overall simulation process into three 
nested layers
 The Presentation Layer
 The Collision Layer
 The Simulation Layer.



    

Time control: Presentation Layer

 From users point-of-view the overall simulation 
must be present (rendered) in a sequence of 
animation frames

 The size of the frame is obviously application 
dependent:

 In time-critical and interactive applications (VR) it 
is usually fixed and defined by the user/device 
(min. 25 frames per seconds)

 In large, complex offline simulations it can vary 
upon the computational expenses



    

Time control: Collision Layer

 Within each frame the motion solver perform 
some sub-steps to advance the motion correctly.

 Due to collision and constraint resolution  
discontinuities arise in the motion

 Depending on the time of collision detection 
(resolution) the number (size) of ”collision steps” 
can be fixed or adaptive

 When handling multiple penetrating objects in one 
step fixed time stepping is usually suitable

 If only one collision is resolved at once adaptive 
time stepping technique should be used



    

Backtracking Approach

 We want to advance the simulation form t
0
 to t

1

 Use bisection to find the first collision occurrence
 First check for collisions at t

1
 , next at mid time t

m
 = 0.5(t

0
+t

1
)

 If there is some collision proceed similar back in (t
0
,t

m
)

 Otherwise proceed in second half interval (t
m
, t

1
)

 Proceed similar until desired number of iterations

 if we know the time derivative of the separation 
distance the search can be even faster

 It is simple, robust, can have slow convergence and 
tunneling problem (some collisions are missed)



    

One-Side Approach

 The One-Side Approach is a more conservative 
technique. We always advance the simulation 
forward in time.
 This is possible, since between collisions objects move along 

ballistic trajectories and we can estimate the lower bound of 
their Time of Impact (TOI)

 Given upper bounds on angular and linear 
velocities we can estimate maximal translation of 
any surface point (on both estimated bodies) 
w.r.t. some direction axis d

 Find earliest time when bodies may penetrate. If 
no collision occurs, we advance bodies



    

User and Time control

t0

t0 t1

t1 t2

Bisection

TOI

d

d

 During both methods 
full collision detection 
is performed on 
estimated times

 Alternative solution is 
to use continuous 
collision detection



    

Time control: Simulation Layer

 Within each ”collision” step the motion solver must 
integrate the motion equation

 Numerical ODE solver usually requires several 
integration steps to achieve desired accuracy and 
stability

 Again we can choose a fixed or adaptive time 
stepping scheme



    

The
End


