Computational Logic Description Logic ALC

Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

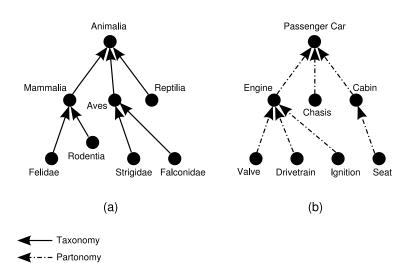
- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)
- TBox terminological data
- ABox assertional data

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)
- TBox terminological data
- ABox assertional data
- Logic semantics and reasoning

Example Ontologies



Vocabulary

Vocabulary:

- Individual symbols:
 - $a, b, \ldots \in N_{\mathsf{I}}$
- Concept symbols:

$$\textit{A},\textit{B},\textit{C},\textit{D},\ldots\in\textit{N}_{C}$$

- Role symbols:
 - $R, S, \ldots \in N_R$

Concepts

- **1** Atomic concepts: $A, B, \ldots \in N_C$
- **2** Complex concepts are smallest set expressions of the forms: $A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$ where $A \in N_C$, $R \in N_R$, and C, D are any complex concepts

Axioms

- Subsumption (General Concept Inclusion, GCI): $C \sqsubseteq D$ for any concepts C and D
- ② Individual assertions: a: C (also written C(a)) for any $a \in N_1$ and any concept C
- Note assertions: a, b : R (also written R(a, b)) for any $a, b \in N_1$ and any $R \in N_R$

Knowledge Base

DL KB is composed of 2 parts:

- TBox T: finite set of GCI (terminological knowledge)
- ABox A: finite set of concept and role assertions (data, assertional knowledge)

Semantics: Interpretation

$$\mathcal{I} = \left\langle \Delta, \cdot^{\mathcal{I}} \right\rangle$$
 is interpretation of $\left\langle \mathcal{T}, \mathcal{A} \right\rangle$ if:

- ullet domain Δ is a non-empty set
- $\cdot^{\mathcal{I}}$ is a function s.t.: $a^{\mathcal{I}} \in \Delta$ for all $a \in N_{\mathsf{I}}$ $C^{\mathcal{I}} \subseteq \Delta$ for all concepts C $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for all $R \in N_{\mathsf{R}}$
- and for any C, D and R, the following restrictions hold: $\neg C^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$ $C \sqcap D^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $C \sqcup D^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $\exists R. C^{\mathcal{I}} = \{x \in \Delta \mid \exists y \in \Delta : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$ $\forall R. C^{\mathcal{I}} = \{x \in \Delta \mid \forall y \in \Delta : \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}}\}$

Semantics: Satisfiability & Satisfaction

- concept C is satisfiable if $C^{\mathcal{I}} \neq \emptyset$ for some interpretation \mathcal{I}
- \mathcal{I} satisfies (\models) axioms as follows:

$$\mathcal{I} \models C \sqsubseteq D \text{ if } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$

$$\mathcal{I} \models a : C \text{ if } a^{\mathcal{I}} \in C^{\mathcal{I}}$$

$$\mathcal{I} \models a, b : C \text{ if } \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$$

Semantics: Model

Interpretation $\mathcal{I}=\left\langle \Delta,\cdot^{\mathcal{I}}\right\rangle$ is a model of $\left\langle \mathcal{T},\mathcal{A}\right\rangle$ if it satisfies every axiom in \mathcal{T} and \mathcal{A}

KB $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable if it has a model

Reasoning Tasks

Satisfiability of concepts:

C is satisfiable w.r.t. $\langle \mathcal{T}, \mathcal{A} \rangle$ if there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A} \rangle$ such that $C^{\mathcal{I}} \neq \emptyset$

Entailment:

 $\langle \mathcal{T}, \mathcal{A} \rangle$ entails $C \sqsubseteq D$ ($\langle \mathcal{T}, \mathcal{A} \rangle \models C \sqsubseteq D$) if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A} \rangle$