Lecture 2: Reasoning with FOL 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2 Oct 2012

Calculus

Intuitions:

- Formula $P \wedge (P \rightarrow Q) \rightarrow Q$ is a tautology.
- ② Hence for any theory T: if $T \models P$ and $T \models P \rightarrow Q$ we can conclude $T \models Q$.
- We express this with with the derivation rule Modus Ponens:

$$\frac{P,P\to Q}{Q}$$

Note: A tautology is a formula that is always satisfied by any interpretation. A contradiction is a formula that is unsatisfiable.

- Calculus is a system which allows us to derive formulae by derivation rules.
- ② Derivation of a formula Φ from T is called a proof of Φ from T.
- **3** We denote by $T \vdash \phi$ if formula Φ is derived from T by the calculus.

Definition (Soundness)

A calculus is sound iff for all theories T and for all formulae Φ , $T \vdash \Phi$ implies $T \models \Phi$.

Definition (Completeness)

A calculus is complete iff for all theories T and for all formulae Φ , $T \models \Phi$ implies $T \vdash \Phi$.

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ identical to Φ except for every occurrence of x is replaced by t.

A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ identical to Φ except for every occurrence of x is replaced by t.

A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

$$\Phi = (\exists x)(y < x)
\Phi\{y/x\} = (\exists x)(x < x)$$

Hilbert Calculus

Axioms

- $((\forall x)P \to P\{x/t\})$ where term t is substitutable for x in P
- $((\forall x)(P \to Q) \to (P \to (\forall x)Q))$ where x does not occur free in P

Inference Rules

Modus Ponens (MP):

$$\frac{P,(P\to Q)}{Q}$$

Generalization (G):

$$\frac{P}{(\forall x)P}$$



Hilbert Calculus (cont.)

A proof of Φ from T in Hilbert Calculus is a sequence $\langle \Phi_1, \Phi_2, \ldots, \Phi_n \rangle$ s.t. $\Phi_n = \Phi$ and for all $1 \leq i \leq n$ one of the following holds:

- \bullet Φ_i instantiates an axiom;
- \bullet $\Phi_i \in T$;
- **3** Φ_i is derived from the formulae $\Phi_1, \ldots, \Phi_{i-1}$ by one of the derivation rules.

We write $T \vdash \Phi$ if there exists a proof from of Φ from T.

Example

Prove:

$$(P\{x/t\}) \rightarrow (\exists x)P)$$
 i.e. $(P\{x/t\} \rightarrow \neg(\forall x)\neg P)$

where t is substitutable for x in P.

Proof:

Hilbert Calculus (cont.)

Theorem (Soundness & completeness)

Hilbert calculus for FOL is sound and complete.

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$P(x) \vee \neg Q(x) \tag{1}$$

$$P(x) \lor Q(x) \land S(x,y)$$
 (2)

$$(\exists x)P(x) \tag{3}$$

$$(\forall x)(\neg P(x) \lor Q(x)) \tag{4}$$

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$P(x) \vee \neg Q(x) \tag{1}$$

$$P(x) \lor Q(x) \land S(x,y)$$
 (2)

$$(\exists x)P(x) \tag{3}$$

$$(\forall x)(\neg P(x) \lor Q(x)) \tag{4}$$

Note: we will understand clauses as closed, universally quantified formulae, but we will omit the quantifiers.

Definition (Complementary literals)

Given any atom A, we say that the two literals A and $\neg A$ are complementary.

Intuition: (Simplified) resolution rule:

$$\frac{P \lor Q, \neg P \lor R}{Q \lor R} \quad \frac{Q \lor P, R \lor \neg P}{Q \lor R}$$

Note: we say that the two clauses $P \lor Q$ and $\neg P \lor R$ $(R \lor \neg P)$ containing complementary literals P and $\neg P$ resolve into the single clause $Q \lor R$.

Negation Normal Form

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \land, \lor\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

Negation Normal Form

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \land, \lor\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

Transform any formula into NNF:

- Double negative law:
 - $\neg \neg P/P$
 - De Morgan's law:

$$\neg (P \land Q)/(\neg P \lor \neg Q)$$
$$\neg (P \lor Q)/(\neg P \land \neg Q)$$

- Quantifiers:
 - $\neg(\forall x)P/(\exists x)\neg P$
 - $\neg(\exists x)P/(\forall x)\neg P$

Prenex Normal Form

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

Prenex Normal Form

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

Transform a formula in NNF into PNF – push quantifiers outwards:

Conjunction:

$$((\forall x)P \land Q)/(\forall x)(P \land Q) \quad (Q \land (\forall x)P)/(\forall x)(Q \land P)$$

$$((\exists x)P \land Q)/(\exists x)(P \land Q) \quad (Q \land (\exists x)P)/(\exists x)(Q \land P)$$
 if x does not appear as free variable in Q

Disjunction:

$$((\forall x)P \lor Q)/(\forall x)(P \lor Q) \quad (Q \lor (\forall x)P)/(\forall x)(Q \lor P)$$

 $((\exists x)P \lor Q)/(\exists x)(P \lor Q) \quad (Q \lor (\exists x)P)/(\exists x)(Q \lor P)$
if x does not appear as free variable in Q

Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Skolemize a formula in PNF:

- **3** Given $\Phi = (\forall x_1) \dots (\forall x_n)(\exists y)\Psi$, replace $(\exists y)\Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \dots, x_n)$ where f is a new function symbol.
- Repeat until the there are no existential quantifiers.

Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Skolemize a formula in PNF:

- **3** Given $\Phi = (\forall x_1) \dots (\forall x_n)(\exists y)\Psi$, replace $(\exists y)\Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \dots, x_n)$ where f is a new function symbol.
- 2 Repeat until the there are no existential quantifiers.

Note: Φ and the resulting formula Φ' are equisatisfiable (i.e., one is satisfiable iff the other one is). They are not necessarily equivalent.

Note: the new function f is called Skolem function. If f is nullary, it is called Skolem constant.

Conjunctive Normal Form

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

Conjunctive Normal Form

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

Transform Φ into CNF:

- Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- Apply distributive law: $((P \land Q) \lor R)/((P \lor R) \land (Q \lor R))$ $(P \lor (Q \land R))/((P \lor Q) \land (P \lor R))$

Definition (Unification)

Given two literals P, Q and a substitution θ , we say that $Unify(P, Q, \theta)$ is true if $P\theta = Q\theta$.

Resolution rule:

$$\frac{P_1 \vee \dots \vee P_i \vee \dots \vee P_m, Q_1 \vee \dots \vee Q_j \vee \dots \vee Q_n, \textit{Unify}(P_i, \neg Q_j, \theta)}{P_1 \vee \dots \vee P_{i-1} \vee P_{i+1} \vee \dots \vee P_m \vee Q_1 \vee \dots \vee Q_{j-1} \vee Q_{j+1} \vee \dots \vee Q_n \theta}$$

where for all k, l: P_k, Q_l are literals.

<u>Th</u>eorem

Given a first order theory T and any formula ϕ we have: $T \models \phi$ iff $T \cup \{\neg \phi\}$ is unsatisfiable.

Algorithm: Resolution

Input: FOL theory T, formula ϕ

Output: True if $T \models \phi$

- **①** Transform $T \cup \{\neg \phi\}$ into CNF, yielding a set of clauses.
- 2 Exhaustively apply the resolution rule is applied to all possible clauses that contain complementary literals
 - all repeated literals are removed
 - all clauses with complementary literals are discarded
- if empty clause is derived answer "True" $T \land \neg \phi$ is not satisfiable; answer "False" if it is not possible to resolve any more clauses.

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

Note: the resolution algorithm may not terminate, if $T \not\models \Phi$ – the algorithm is semidecidable.