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Calculus

Intuitions:

1 Formula P ∧ (P → Q)→ Q is a tautology.

2 Hence for any theory T : if T |= P and T |= P → Q we can

conclude T |= Q.

3 We express this with with the derivation rule Modus Ponens:

P,P → Q

Q

Note: A tautology is a formula that is always satis�ed by any

interpretation. A contradiction is a formula that is unsatis�able.
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Calculus (cont.)

1 Calculus is a system which allows us to derive formulae by

derivation rules.

2 Derivation of a formula Φ from T is called a proof of Φ from

T .

3 We denote by T ` φ if formula Φ is derived from T by the

calculus.
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Calculus (cont.)

De�nition (Soundness)

A calculus is sound i� for all theories T and for all formulae Φ,

T ` Φ implies T |= Φ.

De�nition (Completeness)

A calculus is complete i� for all theories T and for all formulae Φ,

T |= Φ implies T ` Φ.
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Calculus (cont.)

De�nition (Substitution)

The formula resulting from Φ by substitution of a variable x by

some term t (denoted Φ{x/t}) is a formula Ψ identical to Φ
except for every occurrence of x is replaced by t.

A term t is substitutable for a variable x in a formula Φ i� no

occurrence of a variable in t becomes bounded after the

substitution.

Φ = (∃x)(y < x)
Φ{y/x} = (∃x)(x < x)
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Hilbert Calculus

Axioms

1 (P → (Q → P))
2 ((P → (Q → R))→ ((P → Q)→ (P → R)))
3 ((¬P → ¬Q)→ (Q → P))
4 ((∀x)P → P{x/t})

where term t is substitutable for x in P
5 ((∀x)(P → Q)→ (P → (∀x)Q))

where x does not occur free in P

Inference Rules

Modus Ponens (MP):

P, (P → Q)

Q

Generalization (G):
P

(∀x)P
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Hilbert Calculus (cont.)

A proof of Φ from T in Hilbert Calculus is a sequence

〈Φ1,Φ2, . . . ,Φn〉 s.t. Φn = Φ and for all 1 ≤ i ≤ n one of the

following holds:

1 Φi instantiates an axiom;

2 Φi ∈ T ;

3 Φi is derived from the formulae Φ1, . . . ,Φi−1 by one of the

derivation rules.

We write T ` Φ if there exists a proof from of Φ from T .
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Example

Prove:

(P{x/t})→ (∃x)P) i.e. (P{x/t} → ¬(∀x)¬P)

where t is substitutable for x in P .

Proof:

1 ((∀x)¬P → ¬P{x/t}) (Axiom 4)

2 (((∀x)¬P → ¬P{x/t})→ (P{x/t} → ¬(∀x)¬P)) (Axiom 3)

3 (P{x/t} → ¬(∀x)¬P) (MP)

Martin Baláº, Martin Homola Lecture 2: Reasoning with FOL



Hilbert Calculus (cont.)

Theorem (Soundness & completeness)

Hilbert calculus for FOL is sound and complete.
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Resolution

De�nition

A literal is either an atom or an atom preceded by negation (¬).

De�nition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

P(x) ∨ ¬Q(x) (1)

P(x) ∨ Q(x) ∧ S(x , y) (2)

(∃x)P(x) (3)

(∀x)(¬P(x) ∨ Q(x)) (4)

Note: we will understand clauses as closed, universally quanti�ed

formulae, but we will omit the quanti�ers.
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Resolution (cont)

De�nition (Complementary literals)

Given any atom A, we say that the two literals A and ¬A are

complementary.

Intuition: (Simpli�ed) resolution rule:

P ∨ Q,¬P ∨ R

Q ∨ R

Q ∨ P,R ∨ ¬P
Q ∨ R

Note: we say that the two clauses P ∨ Q and ¬P ∨ R (R ∨ ¬P)
containing complementary literals P and ¬P resolve into the single

clause Q ∨ R .
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Negation Normal Form

De�nition (Negation normal form)

A formula φ is in the negation normal form (NNF) i� {¬,∧,∨} are
are the only allowed connectives and negation only occurs in front

of atoms in φ.

Transform any formula into NNF:

Double negative law:

¬¬P/P
De Morgan's law:

¬(P ∧ Q)/(¬P ∨ ¬Q)
¬(P ∨ Q)/(¬P ∧ ¬Q)

Quanti�ers:

¬(∀x)P/(∃x)¬P
¬(∃x)P/(∀x)¬P
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Prenex Normal Form

De�nition (Prenex normal form)

A formula is in prenex normal form (PNF) i� it is of the form

(Q1x1) . . . (Qnxn)F , n ≥ 0, where Qi is a quanti�er, xi is a variable

and F is quanti�er-free formula.

Transform a formula in NNF into PNF � push quanti�ers outwards:

Conjunction:

((∀x)P ∧ Q)/(∀x)(P ∧ Q) (Q ∧ (∀x)P)/(∀x)(Q ∧ P)
((∃x)P ∧ Q)/(∃x)(P ∧ Q) (Q ∧ (∃x)P)/(∃x)(Q ∧ P)
if x does not appear as free variable in Q

Disjunction:

((∀x)P ∨ Q)/(∀x)(P ∨ Q) (Q ∨ (∀x)P)/(∀x)(Q ∨ P)
((∃x)P ∨ Q)/(∃x)(P ∨ Q) (Q ∨ (∃x)P)/(∃x)(Q ∨ P)
if x does not appear as free variable in Q
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Skolem Normal Form

De�nition (Skolem normal form)

A formula is in Skolem normal form (SNF) i� it is in PNF with only

universal quanti�ers.

Skolemize a formula in PNF:

1 Given Φ = (∀x1) . . . (∀xn)(∃y)Ψ, replace (∃y)Ψ with Ψ′ in
which every occurrence of y is replaced by f (x1, . . . , xn) where

f is a new function symbol.

2 Repeat until the there are no existential quanti�ers.

Note: Φ and the resulting formula Φ′ are equisatis�able (i.e., one is

satis�able i� the other one is). They are not necessarily equivalent.

Note: the new function f is called Skolem function. If f is nullary,

it is called Skolem constant.
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Conjunctive Normal Form

De�nition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) i� it is a

conjunction of clauses.

Transform Φ into CNF:

1 Negation Normal Form

2 Prenex Normal Form

3 Skolem Normal Form

4 Apply distributive law:

((P ∧ Q) ∨ R)/((P ∨ R) ∧ (Q ∨ R))
(P ∨ (Q ∧ R))/((P ∨ Q) ∧ (P ∨ R))
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Resolution (cont.)

De�nition (Uni�cation)

Given two literals P,Q and a substitution θ, we say that

Unify(P,Q, θ) is true if Pθ = Qθ.
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Resolution (cont.)

Resolution rule:

P1 ∨ · · · ∨ Pi ∨ · · · ∨ Pm,Q1 ∨ · · · ∨ Qj ∨ · · · ∨ Qn,Unify(Pi ,¬Qj , θ)

P1 ∨ · · · ∨ Pi−1 ∨ Pi+1 ∨ · · · ∨ Pm ∨ Q1 ∨ · · · ∨ Qj−1 ∨ Qj+1 ∨ · · · ∨ Qnθ

where for all k , l : Pk ,Ql are literals.
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Resolution (cont.)

Theorem

Given a �rst order theory T and any formula φ we have: T |= φ i�

T ∪ {¬φ} is unsatis�able.
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Resolution

Algorithm: Resolution

Input: FOL theory T , formula φ
Output: True if T |= φ

1 Transform T ∪ {¬φ} into CNF, yielding a set of clauses.
2 Exhaustively apply the resolution rule is applied to all possible

clauses that contain complementary literals

all repeated literals are removed

all clauses with complementary literals are discarded

3 if empty clause is derived answer �True� T ∧ ¬φ is not

satis�able; answer �False� if it is not possible to resolve any

more clauses.
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete

, i.e., given input T

and Φ, if the algorithm answers �True� then T |= Φ (soundness),

and, if T |= Φ the algorithm answers �True� (completeness).

Theorem (Termination)

If T |= Φ then the resolution algorithm eventually terminates, given

T and Φ on input.

Note: the resolution algorithm may not terminate, if T 6|= Φ � the

algorithm is semidecidable.
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