


Lesson 0?2 Outline

* Problem definition and motivations

* Mathematical Begrounds

* Fluid dynamics and Navier-Stokes equations
* Grid based MAC method

* Particle based SPH methoo

* Neighbor search for coupled particles

* Demos / tools / libs






Motivations

* Dynamics of incompressible fluids is governed by
the following Navier-Stokes equations

Vou =i

ou (e 1—Vp + oV'u + F
Ot p

* Motivation: We need to understand the math
behind !



Spatial Discretization

* Virtually split simulation space into finite elements

* [rregular finite elements
> Octrees, tetrahedral meshes, ...

*Regular finite elements i

> Regular grids \Ay




Scalar and Vector Fields

* Scalar field is a

function mapping a

location in the

simulation space to a

scalar value
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* Vector fieldis o
function mapping a
location in the
simulation space to a
vector value




Scalar and Vector Field Notation

* Scalar field * Vector field
> f:R0— R >F:R" —R™
>f(x) =a >F(x) =a
* 2D/3D Scalar fields * 2D/3D Vector fields
>f(x,y) =a >F(x,y) = (U, v)
> f(x, ¥ 7} =kG >F(x,y,2) = (U, v, w)
>u(x,y,z) =a
2Vl Y, 7) = b

>w(x,y,z) =c



Calculus - Partial Derivative

* Partial Derivative (0) of a function of several
variables is its derivative with respect to one of
those variables with the others held constant

fx(x,y,z) = af(g;cy’z) . limh—>0f(x—'—h’y’Z)z_hf(x_h’y’Z)
fy(x,y,Z) o af(g’yy’z) — hmhﬁof(X,J/"'h,Z)z—hf(X,y—h,z)

£m vre) R B Y h) -/ (. y. 2=k




Calculus - Finite Differences

*Forward derivative *Forward difference
of C NN D) . S0 ()
X
* Backward derivative * Backward difference
O Sy ) m e Y 2 N2 v hy, 2)
ox h B h
* Central derivative * Central difference

flx+h,y,z)—f(x—h,y, 2)

ﬂ — lim f(X"‘h,y,Z)—f(X_h,y,Z) —

0x et 2h

i =



Calculus - Gradient Operator

* Gradient of a scalar field is a vector field which
points in the direction of the greatest rate of
increase of the scalar field, and whose magnitude
is the greatest rate of change.

* Gradient operator (0) is a vector of partial
derivatives

it (8u ou 8u)

g dy 0z



Calculus - Gradient Operator

* First-order finite differences

u (B u(x—l—h,y,z}?—u(x,y,z)
vix,yv+h,z)—vix, v,z

e ey }2 (25, z)

w el w(x,y,z+h}3—w(x,y,z)

*Finite difference of Gradient Operator
u = (u,v,w) Uil e (e iz v (v, y, 2), wix, v, z))

V ul vt = (ux(x,y,Z),Vy(x,y’Z),Wz@C,y’Z>) T

ulx+h,y,z)—u(x,y,z) vix,y+h,z)—v(x,y,z) w(x,y,z+h)—w(x,y,z)
h ; h ‘ h :




Calculus - Divergence of field

* Divergence (O[Jlis an operator that measures the
magnitude of a vector field’s source or sink at a
given point

* Divergence of a vector field is a (signed) scalar

u=(u,vw)
e ol

Vou_(ﬁx’ﬁy 0z ol
:6_u+8_v_|_c'3_w:u_|_u_|_u



Calculus - Divergence of field

* First-order finite differences
ulx+h,y,z)—u(x,y,z)

u(x,y,2) =

h
v, (xRN v(x,y—l—h,zh)—v(x,y,z)
_ wix,y,z+h)—w(x,y,z)
wz<x’y’Z) iy h

*Finite difference of Gradient Operator

u = {u e u e vz V(e Y, z), wix, v, 2))

AV 1 e — ux(x,y,z)—l—vy(x,y,z)—l—wz(x,y,z) =
u(lx+h,y,z)—ulx,y,z)+vix,y+h,z)—vix,y,z)+w(x,y,z+h)—w(x, y, z)
h




Calculus - Laplacian operator

* Laplacian roughly describes how much values in
the original field differ from their neighborhood
average

* Laplacian operator ([1?) is defined as the
divergence of a gradient

2 2 2
Vi e O
g oy 0z

* Laplacian of a scalar vand vector u fielo

ol "o dii o ou ou Ou oO’u 0'u 0Ou
@) s @) T _|_ _|_
v (ax’ay’az)(ax’ay’az) PR 52
Vi = = (Vzu,vzv,vzw)



Calculus - Laplacian operator

* Second-order finite differences
ulx+h,y,z)tu(x—h,y,z)-2u(x,y,z)

u, (i 2
ulx, yv+h,z)+ulx,y—h,z)-2ulx, vy, z
vyy(x,y,z) it ( 4 ) ( }?; ) ( ) )
ulx,v,z+h)+ulx,v,z—h)—2u(x,y,z
W (% oy e };vz )—2u(x,y,z)

*Finite difference of Laplaciaon operator

Veulx vzt Vil Z)—I—uyy(x, i s oty )
u(lx+h,y,z)+ulx—=h,y,z)+u(x, y+h,z)+tulx,y—h,z)+tu(x,y,z+h)+u(x,y,z—h)—6u(x, y, z)
h2







Motivations

* Dynamics of incompressible fluids is governed by
the following Navier-Stokes equations

Vou =i

ou (e 1—Vp + oV'u + F
Ot p

* Motivation: We need to understand the physics
behind |



Nomenclature

* Velocity vector field (u)
* Pressure scalar field (p)

* Density of fluid (p)
* Viscosity of fluid (v)
* External force field (F)

Vou =il

I —(uoV)u — I—Vp + oV’u + F
Ot p



Navier-Stokes Equations

* Set of two Partial differential equations

* Continuity Equation - The rate at which mass
enters a system is equal to the rate at which mass
leaves the system.

Vou = 0

* Momentum equation — Application of Newton'’s
second law to fluid motion
ou

e — I—Vp + oV’u + F
Ot p



Continutity Equation

* Total mass must be always conserved.

* The rate at which mass enters a system is equal to
the rate at which mass leaves the system.

* The divergence of the velocity field must always
be zero

u = (s

Vou = u +u,+u,=0



Momentum Equation

* Velocity field of fluid changes over time due to:

ou
Ot




Momentum Equation

* Velocity field of fluid changes over time due to:

* Self advection force

ou
Ot
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Momentum Equation

* Velocity field of fluid changes over time due to:

* Self advection force

* Pressure gradient force

|




Momentum Equation

* Velocity field of fluid changes over time due to:

* Self advection force
* Pressure gradient force

* Internal viscosity force

gu —(uoV)u — I—Vp + oV’u
4 P




Momentum Equation

* Velocity field of fluid changes over time due to:

* Self advection force
* Pressure gradient force
* Internal viscosity force

* External body forces

iy —(uoV)u — 1—Vp + oVu [+ F
Ot p




Time Derivative of Velocity

* At every location velocity field of fluid changes
due to several internal and external forces acting
on fluids body

* [t’s time derivative simple measures the
evaluation of the velocity field in time

ou
Ot




Advection Term

* Advection term represents internal rate of
change of momentum due to velocity itself. To
conserve momentum it must moved (self
advected) through the space along with the fluio

* Mathematically advection is the scaled velocity by
it's divergence

ou
Ot
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Pressure term

* Pressure term defines internal forces generated
due to the pressure differences within the fluid

* For incompressible fluid pressure will be directly
coupled with conservation of mass (continuity
equation)

|




Viscosity term

* Viscosity term captures internal friction forces
due to material friction.

* Viscosity forces cause the velocity of fluid to move
toward the neighbor average, see the Laplacian
operator

gu —(uoV)u — I—Vp + oVu
4 P




External forces

* External forces usually contain gravity, wind, user
drag, contact forces or any other body forces.

* Simply we can modify the velocity field by any
external force while keeping natural motion of
fluio

D S 1—Vp + oVu |+ F
Ot p







Fluid simulation techniques

* Eulerian techniques
> Marker and Cell (MAC)
> Lattice Boltzmann Model (LBM)
> Other Finite Element/Difference Methods (FEM/FDM)

* Lagrangiaon techniques
> Smoothed Particle Hydrodynamics (SPH)
> Fluid Implicit Particle (FLIP)
> Particle in Cell (PIC)
> Moving Particle Semi Implicit (MPS)



Marker and Cell (MAC) Simulation

* Popular Eulerian fluid simulation technique in CG
* Originally invented by Harlow and Welch in 1965

* Key ideas
> Discretize simulation space into cubical grid
> Store fluid variables in a staggered fashion
> Numerically evolve Navies Stokes eq. on grid in time
> Advect mass-less marker particles in velocity field

> Update type (solid, fluid, empty) of cells according to the
location of marker particles



Staggered MAC grio

* Virtually decompose velocity vector field uinto
three respective scalar fields (u,v,w)

* Store each velocity component on face center of
orid cell parallel to face normal

* [N 2D - Vertical faces store horizontal component
and vice versa

* Store pressure in the
center of grid cell




MAC Grid: Cells




MAC Grid: u-velocity




MAC Grid: v-velocity




MAC Grid: pressure




Staggered MAC Grid

Uin  DBiju

Vi
Uiy Pi.y; U; o Ui Piia;
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MAC Simulation




Stable MAC Algorithm

* [nitialization
> Grid initialization
> Particle seeding

* Simulation loop
> Time step estimation
> Particle advection
> Grid update
> Boundary conditions
> Velocity update



MAC - Initialization

* Grid Initialization
* Set all velocities to zero
* Define initial (static) environment

* Label cells as Fluid, Solid or Empty

* Particle seeding

* Randomly seed mass-less marker particles inside
fluid body



MAC Initialization

Fluid cells Empty
Fluid body // cells
v '_\\{\ Solid cells
/ Solid body
//
/
B
Fluid
particles




MAC Simulation Loop

* Calculate (set) simulation time step At

* Advect marker particles along fluid velocity
* Update grid by marker particles

* Apply boundary conditions

* Advance the velocity field u



MAC — Time Step Estimation

* We need to achieve enough
*1) Stability prevent blow up

*2) Accuracy to simulate plausible

* Use Courant-Friedrichs-Lewy (CFL) condition

> The CFL condition states that the time step must be small
enough to make sure information does not travel across
more than one cell at a time.

VbSis'
max (|ul, [v], |w])

VAR



MAC - Particle Advection

* Given velocity field and time step we can freely
advect particles using some explicit scheme

* Standard Euler integration step

xNew =ixdE AT

* Modified Euler (midpoint method)

x* = x EATUEY
xNeW =0 OO AR |



MAC - Grid update

* Particles have new locations
* Cell types must be updated

* Each cell containing at least one particle is
marked as fluid cell

* Solid cells are unchanged
* Other cells are marked as empty (air) cells



MAC - Boundary Conditions

* Two types of boundary condition
> Fluid / Solid boundary conditions
> Fluid / Air boundary conditions

* We need to satisfy them both for velocity and
pressure

* Velocity boundary conditions uses slip-conditions
aond continuity conditions

* Pressure boundary conditions uses Dirichlet and
Neumann conditions (see Pressure calculation)



MAC - Velocity boundary conditions

* Free-slip fluid/solid condition:

* Fluid is freely allowed to slip along the solid/fluid
boundary face

* No-slip fluid/solid condition:

* Fluid is not allowed to slip along the solid/fluid
boundary face



MAC - Velocity Field Update

* Evaluate velocity with operator splitting in four
steps:

*1) Force - Apply external forces

*2) Advect - Apply advection

* 3) Diffuse - Apply viscosity

*4) Project - Calculate and apply pressure

u (X, t) - Woforce i W]Odvect Lt W]d|ffuse il W]prOJeCt ity W4 - u (X, t.'.h)



MAC - Apply External Forces

* Use simple explicit Euler to integrate force fields
* Force field is usually gravity or wind body force

w,(x) = w,(x) + AtF(x,t)



MAC - Apply Velocity Advection

* We want to know how will be the velocity advected
over the time step

* Simple Euler scheme brings instability or extremely
small time steps must be taken

* Method of characteristics is unconditionally
stable, allows large time steps - semi Implicit
advection



MAC — Semi-implicit Advection

* Suppose simple particle advection

* During time step particle will travel along the blue
path in the velocity field and can carry any
scalar/vector with it

*Let p(x,s) be the
location of particle B

at time s —
p(x,At) p(x,0)=x




MAC — Semi-implicit Advection

* Key idea - trace particle in negative velocity ano
find which velocity will be advected to particles

location

* Use bilinear interpolation
of values in green cells

p(x,0)=x

-
Iy




MAC — Semi-implicit Advection

* Bilinear interpolation is always bounded,
advection is unconditionally stable

* Particle back-tracing must be done separately for
each velocity dimension (scalar field)

* [f particle tracer is simple Euler with At time step
semi-implicit advection can be written as

w,(x) = w,(px, -At))

w,(x) = w,(x - Atw (x))



MAC — Applying Viscosity

* Explicit and Implicit Euler Scheme

x(t + At) = x(t) + At x'(t) (Explicit Euler)
x(t + At) - At x'(t) = x(t) (Implicit Euler)

* Implicit viscosity application (sparse lin. eq. Solver)

dw, (x)/dt = O?w, (x)

w,(x) - At O?w,(x) = w,(x)

(I - At 09w, (x)=w,(x)

Ax =b where A = ([ - At [?) (Sparse system)



MAC — Calculating Pressure

* For solving pressure we use implicit Euler and
continuity condition

dw, (x)/dt = -Op (x)

u(x) =w,(x) =w,(x) - AtOp (x)

0 =[0eu = Oew,(x) = Oew,(x) - At?o(x)

o (x) = Oew, (x)/At (Poisson Equation)

Ax=b where A=[F (Sparse system)



MAC - Pressure Boundary Conditions

* Neumann boundary condition

> Set pressure in solid cells equal to fluid pressure in neighbor
fluid cell

> Pressure gradient along boundary face will be zero =
Neumann boundary condition

* Dirichlet boundary condition
> Set pressure in empty (air) cells to zero = Dirichlet boundary
condition
* Next slides demonstrate Poisson equation
evaluation satisfying Neumann and Dirichlet
boundary conditions



MAC - Poisson equation




MAC - Poisson equation




MAC - Poisson equation




MAC - Poisson equation




MAC — Applying Pressure

* ONnce the pressure is known we use explicit Euler
to find new velocity

dw, (x)/dt = -Op (x)
u(x) =w,(x) =w,(x) - AtOp (x)



Npglelelipl=Ye] Particle |gi\Zeigele)Yiglolapllels




Smoothed Particle Hydrodynamics

* Historical origin

> [Invented by Monaghan and Lucy in astrophysics for
Simulating flow of interstellar gas

* Classification
> Lagrangian mesh-less particle-based

> Based on local integral function representation
(convolution)

*Principles
> Represent fluid with finite number of particles
> Store all quantities only on particle positions only
> Approximate field quantities by kernel convolution

> Use Lagrangiaon formulation of Navies-Stokes equations for
particle dynamics



SPH — Method Overview

* Benefits
> Mesh-less (grid-less) particle-based
> No advection term in Navier Stokes equations
> Inherently mass conserving (finite number of particles)
> Straightforward multiphase extension
> Spatially unlimited simulation domain
> Suitable for interactive applications

* Drawbacks
> Difficult to achieve incompressible fluid
> Time consuming Neighbor search algorithm
> Boundary deficiency (e.g. in density estimation)



SPH — Approximation Principle

* Assume the following notation:

= A(r) - Scalar (or vector) field, A, =A(r)

* &(r) - Dirac delta function

« W, (r) - Radial symmetric smoothing kernel
* I — Position of i-th particle

* V. —Volume of i-th particle



SPH — Approximation Principle

* Integral representation of function
A(r) = A(r)B(r-r)or' =A*3

* Approximation of function by convolution
Alr) =A*W_=[A(r)W, _(r -r)dr

* Particle-base approximation of function
<A(r)> = }J_VJAJWh(r - rj) =AW, _=A(r)



SPH — Gradient and Laoplacian

* Basic Gradient Approximation Formula (BGAF)

], (ARSI =D VAW, (r - r)

* Basic Laplacian Approximation Formula (BLAF)

(17, (A=) ¥ eV, (- 1)



SPH — Gradient and Laoplacian

* Difference Gradient Approximation Formula (DGAF)
], (AJSSEEIEE (A= A) LIW, (- r)

* Symmetric Gradient Approximation Formula (SGAF)
[ (A) =p3 Ve (A/p, + Alp)OW, (r - r)

* Zero Laplacian Approximation Formula (ZLAF)
(12 (A) = 3 V(A- AJEPW, (r-r)



SPH — Kernel functions: W_(r)

* Basic kernel function properties
> Compact support
> Partition of unity
> Symmetry
> Limit to delta function

s»|rl2h—=W_(r) =0 (Compact Support)
*»J W (r)dr =1 (Partition of unity)
» ]/ rW (r)dr =0 (Symmetry)

»Lim__ W, (r) =3(r) (Limit to delta function)

0



SPH - Kernel functions

- Kernel function
— Kernel function derivative
--- Kernel function second derivative

03 0.6 —0.4 -0z o 0.2 04 0.6 0.8 1




SPH — Navier Stokes Equations

* Eulerian formulation
dp/0t + ve[dp = —pldev =0
o(ov/ot + velv ) = -[OP + ud?v + of

* Lagrangiaon formulation
dp/dt = 0p/ot + ve[dp = — pdev =0
dv/dt = ov/ot + vellv = -[OP/p + y[?v/p +a =

= QPress + Ovisco + Oext




SPH — Evaluating Fluid Properties

* Density and pressure estimations
P(r =S O (r —r) => meW, (r-r)
P(r) =ke((o/p,) -1) (State equation)

* Pressure, viscosity and external forces
feres*(r)=-(m/p) 0, (p)= > mm (P/p, + P/p ) OW Fe=(r - r)
fvisco (r-i) i _(mi/pi) |:|2Z (}JV) L EJ\/I\/J (vJ ¥ vi) |:|2Whvisco (ri bl rj)

fet(r) =ma = fint+ forav +



SPH — Fluid Simulation Algorithm

* Collision Detection

> Find approximate and precise neighbor particle pairs
> Find closest points on boundaries

* SPH Dynamics
> Accumulate densities
> Calculate pressure
> Accumulate pressure, viscosity forces and color field
> Apply surface tension force
> Apply boundary collision forces

* Time integration (ODE)

> Use leap-frog to integrate positions and velocities



In: support length h. subdivision factor H and delta time At

function SPH(h. At)
1: NEIGHBOURS «— REPORTALLNEIGHBORS(h)

2: foreach P; in PARTICLES do
3 pi — 0: V(i — 0: ViC; —0; £ — fglm /* initialize
4 foreach P; in NEIGHBOURS(P;) do /* accumulate density
. - poly

6 end

p; — k&8s ((%) - l) /* calculate pressure
8: foreach P; in NEIGHBOURS(P;) do /* accumulate forces

o . . . i p-‘ I_'}]‘_F‘:‘: . . _ p]‘_?‘:‘:

10: f — f + 1_1?};{1(1J — )TE I-grisco{ri _ I‘j) /* (= f;riECG)
11: VC; — VC; + Ve BV (r; — 1) /% (= Ve
12: \_ZC — VEC + 1J£jnr\—iﬂ hPG }'{ri _ I'j) /x (= v?cﬁint}
13: end

f; — f; — HHTECHH T‘: /* {f_ fj_nt)
14: (I i vC 111t| T
15: end
16: foreach P; in PARTICLES do /* Leap-Frog
17; vi — v; + At :;E
18; r; — r; + Atv;
19: end

end




Neighbor search with Z-indexing

* Neighbor search: Given a particle find all particles
whose distance to this particle is less than some
threshold (support radius in SPH)

> This can be O (n?) problem — very expensive for large
number of particles

> [n SPH simulations it is in average case an O(n) problem
* Proposed solution: Z-indexing and radix sort

* /-indexing: A strategy create a linear index of
particles in a 3D grid while maintaining good
spatial locality of particles enumerated in index
order.

* Radix-sort: O(n) sort for bounded values



Z-indexing : Index order

= () DXi=— ]! XA %2 el 3 X =4 =15 A= XE—/
000 § 001 § 010 § 011 § 100 § 101 § 110 § 111

y = 0 | 000000  ©PPEP1 = ©EP1P0 = P10l = 010000 = 010001 = 01010 = 0lelel
eee [ i ] ] ' i ]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

y =1 000010/ | 000011 000111 10010 3 010011 010111

y =2 | 001000 - 001100 = @01101 011101

y =3 001019 3 001011 011011 011111

y =4 100000 lee1ie1l 110001 110101

y = 5 | 1eee1e/ 100011 100111 10010/ 110011 110111
101 1 :

y = 6 | 101000 — ~ 101100 101101 111000 — | . 111101
110 : ; : :

y = 7 | 101010/ | 101011 1110109/ | 111011 /| 111119/ 111111




Z-Indexing: Index Structure

* Given (8-bit) coordinates (i,j,k) of some cell
>i=dijddiiii, (eg 45 = 00101101)

> J =SR] (eg 135 = 10000111)
>k = kk k.kkkkk (eg 209 = 11010001)

* The interleaved (24-bit) Z-index of cell (i,j,k) is:
> Index = k7j7i7k6j6i6k5j515k4j4i4k3j3i3k2jzizk1jlilkejei@
>Index = 110 100 001 100 001 011 010 111

* We precompute tables i and k,, and get index

24% Jog

»Index =i, or j, ork, (oris bit-wise or operation)

* [aQbles i and |<2 ,are stored as CUDA textures

24% Jos



Z-Indexing: Index Structure

»For each 1 (0..2") precompute i,, as
>i, = 001 00i 00i 00i 00i 00i 00i 001

24

>1 = 000000001000001001000001

24
»For each j (0..2") precompute j,, as
>3j,, = 03,007 00j.007,00],007.007 007 0
>3j,, = 010000000000000010010010
»For each k (0..2") precompute k,, as
>k, = k 0ok 0ok 0ok, 00k 0ok 0ok 00k 00
>k, = 100100000100000000000100



/Z-Indexing: Summary

* The simulation domain is divided into a virtual
indexing grid

* Grid location of a particle is used to determine its
bit-interleaved Z-index

* The Z-indices are computed very efficiently in
parallel using a table look-up approach and
binary “or”

* /-indices of particles being within some 2" spatial
block are contiguous

* Before NB particles are sorted based on Z-indices
using parallel CUDA radix-sort



Demos / Tools / Libs

* SPH water demo * MAC fire/smoke demo

[ ﬂ'l stable but inaccurate compressible Fluid (thanx to Jos Stam)

Lalla 11 ERINX
Eafisit tocnt. 19300000

i-ie . 197

Elgllgﬁltorc et éQ"?g.:gDDD

B e ghacte: Wrs 2
=iy Fl .

i icy ho}:sc&;»n_ caa 00

el HehymEars Codnt: 523189

Uihrd

Start Simulation




... fire and smoke next time :) ...




