


Lesson 08 Outline

* Problem definition and motivations

* Modeling deformable solids with mass-spring
model

* Position based dynamics
* Modeling cloths with mass-spring model
* Modeling hair with mass-spring model

* Demos / tools / libs



Simulation of Deformable Solids

* Lagrangion Mesh Based Methods
> Continuum Mechanics Based Methods
> Mass-5Spring Systems

* Lagrangian Mesh Free Methods
> Loosely Coupled Particle Systems

> Smoothed Particle Hydrodynamics (SPH)
> Mesh Free Methods for the solution of PDEs

* Reduced Deformation Models and Modal Analysis

* Eulerian and Semi-Lagrangian Methods
> Fluids and Gases
> Melting Objects






Mass-spring Model

* Each deformable solid is modeled as a graoph
(mesh) of particles (with mass) connected with
mass-less springs

* Particle Model

> Each particle is defined at least by its Mass (mi), Position (pi),
Velocity (vi)

> Additionally there can be force, acceleration, momentum ...
> Usually particles can be incident to any number of springs

* Spring Model
> Springs usually connects 2 particles and exerts force on them

> Usually sprigs have non-zero rest length and some constant
material properties



Hook's Spring Model

*Hook's Law: Strain is directly proportional to stress

«»Formally: f = -k_x
> X is the displacement of the end of the spring from its
equiilibrium position
> f is the restoring force exerted by the material
> k_is a material constant called spring stiffness

* Using rest length and velocity damping
« f == IR RSRTIS = VLI (L)L)

>k is damping factor l 4
e =gl
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Position based Dynamics

* Traditional force based dynamics must solve ODE
using some integration scheme. Using simple and
fast explicit methods can lead simulation to
inaccuracy and instability

* This can be prevented by solving large systems of
equations (using implicit methods) or

* Using more geometric approach by directly modify
positions into stable and more accurate states.

* Such approach (position based dynamics) gives
more control over animation and easily models
constraints.



Position based Dynamics

* Object Representation
> We represent dynamic object with a set N vertices
> Each vertex has: Mass (m)), Position (o), velocity (v)

* Constraint Representation
>Lletp = (p, ..., p,) be the generalized position

> The constraint is a functions C (o) =C (o, ..., p): R =R
J J

> Cardinality m is the number of “used” parameters

> Stiffness parameter kJ € {0...1} is a material property

> We define equality (bilateral) constraint as: C(p) =0

> We define inequality (unilateral) constraint as: C(p) 20



PBD: Algorithm

« 1: forall vertices i: initialize p =p° v . =v?% w =1/m

*2: loop
> 3: forall verticesido { v, < v + Atw f_ (x) }
> 4: DampVelocities(v,, ..., v,)
> 5: forall verticesido { q < p + At v }
> 6: forall vertices i do { CreateCollisionConstraints(x — p) }
> 7:loop n, times { ProjectConstraints(Cl, ...,C, ., q,...,q ) }
> 8: forall vertices [ do { v < (q - p)/At; p < q; }
> 9: VelocityUpdate(v,, ..., v, )

*10: endloop



PBD: Algorithm

* First all masses, positions and velocities are
initialized to rest state

* With each simulation fraome we do
> First we modify velocities due to external forces (3:)
> Next we add artificial damping to the system (4:)
> Then we predict new positions (q) with simple Euler step (5:)

> Next we detect and construct all collision constraints (6:)

> We opply “projection” several times on all constraints (7:)
> We find correct velocities and set projected positions (8:)
> We opply friction and restitution impulses on velocities (9:)



PBD: Constraint Projection

* Assuming constraint is violated ie. C(p) =0 (<0) we
must find correction Ap such that C(po + Ap) =0 (20)

* By linearization we get: C(p+Ap) = C(p) + i C (P) -Ap

> To conserve both momentums correction must be along
direction of constraint function gradient IJ C (o) ie:

>MAp=A0C (0); A (Lagrange multiplier) is a scalar
»A=-Clo) / |0,Clo) |
> For i-th particle with mass m (w =1/m)

> Ap, =AW, G i
> A =-w Clp, - ipdiE@IEIG Rt o )]



PBD: Distance Constraint

«LetC(p) =Clp, p,) = |p,-p,| -9 =0
i Dp]c (p]’ p2) i (p1 3 pz)/lp] i le

2 DpQC (p]’ pg) e (p] T pg)/lp] P p2|
>sh=(lp,-p,| -9) /w,+w, wherew, =1/m andw,=1/m,

_)Ap] o (W]/ (W] +W2))(|p]—p2| -d) (p]—pg)/lp]—pzl
_)Ap2= (W2/ (W]+W2))(|p]—p2| -d) (p]—pz)/|p1_p2|

* For equality constraints we always do projection

*For Inequality we project only when C(p) <0

* Finally we multiply Ap with stiffness k ( Apk )

> Due to iterationsuse k' =1- (1 - k)", Stiffness is applied
linearly after n_iterations



PBD: Collisions

* Given old position pi and predicted position gi we
detectif aray (p, q) enters some object. If yes we

compute entry point 9_and collision normal n_

* Next add collision constraint with stiffness k =1
C(e) = (p-9q) -n_20 (ensures non-penetration)
> When scene contains more dynamic bodies we must provide
constraint from all bodies into one “scene” solver
> For triangle meshes with face (p,, p,, p.): n_= (0, -p,) X (0,-P,)

> Collision constraint generation is done outside the solver
loop, to speed up simulation. Artifacts are negligible



PBD: Damping

* Velocities are damped

* forall vertices i
-)Avi=vcm+u>xri-vi

> V. (S +devi
* endfor

* Av_only damps local

deviations
> Here vV _+twxr is the

velocity due to global body
motion

* Global “body” variables
>0, = (3,0,m)/(%,m)
sv = (3, vm)/(Zm)
sL=%r x(mv)
>J=3 (P (r)Tm,
2y =J 'L
e

> r* is cross product matrix



Position based Dynamics - Summary

* Control over explicit integration with no typical
iNnstability problems

* Positions of vertices and objects parts can directly
be manipulated during the simulation

* Simple handling of general constraints in the
position based setting

* The explicit position based solver is easy to
understand and implement.






Cloth: Representation

* Cloth is represented with arbitrary manifold
triongular mesh (no need for regular lattice)

* Each mesh vertex become a simulation particle

* Given cloth density and thickness we calculate
mass of each triangle.

* Mass of each particle is sum of 1/3 of the mass of
each adjacent triangle.

* Constraints are defined along edges and faces

* Cloth tearing is performed on vertices with large
deformations



Cloth: Constraints

* Stretching Constraints

> Along each mesh edge we define fixed stretching constraint
as simple equality distance constraint (spring)

>C (pp0,) = lp,-p,| =1, wherel is restlength

> Stiffness k_ is usually higher to overcome springiness

* Bending Constraints
> For each pair of adjacent triangles (p,, p., ,) and (p,, p,, p,) we
define a bending constraint
> C, (e 0,5 P> P,)= QCOsS (N, N.) — ¢, Where
= n, = ((p2-p1) x (P3-p1)) / | (P2 - p1) x (03 - p1) |
= n, = ((02-p1) x (p4-p1)) / | (p2 - 01) x (4 - pI) |




Cloth: Collisions and Tearing

* [nequality collision constraints is defined as

i‘ECb(Q’ p]’ p2’ p3) i (q oy p]) N -h
> q is collided point with face (o, p,, ;)

> N is face normal
> h - distance to the face.

* Collision with rigid body exerts impulse mp /At at p

* More involved self-collision detection must be done
cloth becomes to be tangled



Cloth: Overpressure ond lTear

* OQverpressure inside the closed mesh is modeled as
i C(p]’ bl pN) i zj(pﬂ X pjg) ; pj3 o kpvo
> [CEDREED 0. xp) * 2 (0, xp,)

* Cloth Tearing Process

> Whenever the stretching of an edge exceeds a specified
threshold value, we select one of the edge’s adjacent vertices

> We then put a split plane through that vertex perpendicular to
the edge direction and split the vertex into 2 new vertices

> All triangles above the split plane are assigned to the original
vertex while all triangles below are assigned to the duplicate



Cloth: Stiffness and Bending

(k_; k) = {1SLIS— (k: k) = (0.5;1) (k k) = (0.01;1)

(k. k) = (0.5;0) (k_: k) = (0.01;0)




Cloth: Self Collisions and Balloons




Cloth: Examples







Hair: Representation

* Each hair strand is modeled as a set of vertices
connected by edges into series of line segments

* Each vertex is used as simulation particle

* Given material density and strand thickness we
can calculate volume/mass of each segment.
Particle mass is average of incident edge masses

* Strand constraints are applied along edges,
additional (virtual) edges and newly created
particles

* Hair tearing is performed on vertices with large
deformations



Hair: Constraints

* We model Curly Hair and Straight Hair

* Stretching Constraints (springs)
> Linear springs between every consecutive particle

* Bending Constraints (springs)
> Linear springs between every other particle

> The edge springs and bending springs together form
triangles that implicitly represent the orientation of the hair

* Torsion Constraints (springs)

> Twist is modeled by attaching torsion springs that connect
each particle to a particle three particles away from it

* Altitude Constraints (springs)
> See figure



Point/Face Altitude Springs

(coplanar)
g . B
(a) Spring has all (b) Spring has negative (c) Degenerate: all
non-negative barycentric weights point/face springs have
barycentric weights negative barycentric weights
Edge/Edge Altitude Springs
7
) (coplanar)
(d) Spring has all (e) Spring has negative (f) Degenerate: all edge/edge
non-negative barycentric weights springs have negative

barycentric weights barycentric weights



Hair: Altitude Springs

* Point/Face Altitude Springs
> Perpendicular to the face starting from the given point

> Lengthis | =6V/|u x v| where uand v are the vectors of the
base triangle and V is the signed volume of the tetrahedron

* Edge/Edge Altitude Springs
> Perpendicular to common spring and bending spring

> Lengthis | =6V/|ux v| where uand v are the stretch and
bend spring and V is the signed volume of the tetrahedron

> For any tetrahedron, the edge/edge or point/face spring
with minimal length is guaranteed to have all non-negative
barycentric weights, preventing unbounded forces



(a) Curly Hair Springs (b) Straight Hair Springs

~
< Wl S

2 Tetrahedra

m a3 4 Tetrahedra

Edge Springs (desired hair curve)
Extra Edge Springs (form triangles)
B Bending Springs (prevent bend)
B Torsion Springs (prevent twist)
Tetrahedral Altitude Springs (prevent collapse)

Figure 7: Straight and curly hair models using edge, bending, tor-
sion, and altitude springs preserving the implied tetrahedra.

Torsion Spring Path Interrupted Continuous Torsion Spring Path
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Degenerate
Triangle

Figure 8: Triangles define orientations for penalizing twist,
and torsion springs “trace” a continuous path through the non-
degenerate triangles —but they are blocked at straight hair seg-
ments (left). The subdivision and perturbation of our method re-
moves degeneracies so the path becomes continuous (right).




Hair: Linear Strands

Y - a2 A

side to side.



Hair: Curly Strands

\

250,000 total particles) on a character spinning around from back

to front.







