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Lesson 08 Outline

 Problem definition and motivations

 Modeling deformable solids with mass-spring 
model

 Position based dynamics

 Modeling cloths with mass-spring model 

 Modeling hair with mass-spring model

 Demos / tools / libs



    

Simulation of Deformable Solids

 Lagrangian Mesh Based Methods
 Continuum Mechanics Based Methods
 Mass-Spring Systems

 Lagrangian Mesh Free Methods
 Loosely Coupled Particle Systems
 Smoothed Particle Hydrodynamics (SPH)
 Mesh Free Methods for the solution of PDEs

 Reduced Deformation Models and Modal Analysis

 Eulerian and Semi-Lagrangian Methods
 Fluids and Gases
 Melting Objects



    

Mass-spring

Model



    

Mass-spring Model

 Each deformable solid is modeled as a graph 
(mesh) of particles (with mass) connected with 
mass-less springs

 Particle Model
 Each particle is defined at least by its Mass (mi), Position (pi), 

Velocity (vi)
 Additionally there can be force, acceleration, momentum …
 Usually particles can be incident to any number of springs  

 Spring Model
 Springs usually connects 2 particles and exerts force on them
 Usually sprigs have non-zero rest length and some constant  

material properties



    

Hook's Spring Model

 Hook's Law: Strain is directly proportional to stress

 Formally: f = - k
s
 x

 x is the displacement of the end of the spring from its 
equilibrium position

 f is the restoring force exerted by the material 
 k

s
 is a material constant called spring stiffness

 Using rest length and velocity damping

 f = - [k
s
(|l| – l

0
) + k

d
(v

a 
- v

b
)/|l|] (l/|l|)

 k
d
 is damping factor 

f = - k
s
 x

x = l - l
0

l
0

a b



    

Position based

Dynamics



    

Position based Dynamics

 Traditional force based dynamics must solve ODE 
using some integration scheme. Using simple and 
fast explicit methods can lead simulation to 
inaccuracy and instability

 This can be prevented by solving large systems of 
equations (using implicit methods) or

 Using more geometric approach by directly modify 
positions into stable and more accurate states.

 Such approach (position based dynamics) gives 
more control over animation and easily models 
constraints.



    

Position based Dynamics

 Object Representation
 We represent dynamic object with a set N vertices
 Each vertex has: Mass (m

i
), Position (p

i
), velocity (v

i
)

 Constraint Representation
 Let p = (p

1
, …, p

N
) be the generalized position 

 The constraint is a functions C
j
(p) = C

j
(p

1
, …, p

N
): R3N → R

 Cardinality m
j
 is the number of “used” parameters

 Stiffness parameter k
j
 € {0…1} is a material property

 We define equality (bilateral) constraint as: C
j
(p) = 0

 We define inequality (unilateral) constraint as: C
j
(p) ≥ 0



    

PBD: Algorithm

 1: forall vertices i: initialize p
i
 = p

i
0;  v

i
 = v

i
0;  w

i
 = 1/m

i

 2: loop
 3: forall vertices i do { v

i
 ← v

i
 + Δt w

i
 f

ext
(x

i
) }

 4: DampVelocities(v
1
, …, v

N
)

 5: forall vertices i do { q
i
 ← p

i
 + Δt v

i 
}

 6: forall vertices i do { CreateCollisionConstraints(x
i
 → p

i
) }

 7: loop n
S
 times { ProjectConstraints(C1, …, C

M+Q
, q

1
, …, q

N
) }

 8: forall vertices I do { v
i
 ← (q

i
 – p

i
)/Δt;  p

i
 ← q

i
; }

 9: VelocityUpdate(v
1
, …, v

N
)

 10: endloop



    

PBD: Algorithm

 First all masses, positions and velocities are 
initialized to rest state

 With each simulation frame we do
 First we modify velocities due to external forces (3:)
 Next we add artificial damping to the system (4:)
 Then we predict new positions (q

i
) with simple Euler step (5:)

 Next we detect and construct all collision constraints (6:)
 We apply “projection” several times on all constraints (7:)
 We find correct velocities and set projected positions (8:)
 We apply friction and restitution impulses on velocities (9:)



    

PBD: Constraint Projection

 Assuming constraint is violated ie. C(p) != 0 (<0) we 
must find correction Δp such that C(p + Δp) = 0 (≥0)

 By linearization we get: C(p+Δp) ≈ C(p) + ∇
p
C(p)∙Δp

 To conserve both momentums correction must be along 
direction of constraint function gradient ∇

p
C(p) ie:

 Δp = λ ∇
p
C(p); λ (Lagrange multiplier) is a scalar

 λ = - C(p) / |∇
p
C(p)|2f

 For i-th particle with mass m
i
 (w

i
 = 1/m

i
)

 Δp
i
 = λ w

i
 ∇

p
C(p

1
, …, p

N
)

 λ = - w
i 
C(p

1
, …, p

N
) / ∑

j
w

j
|∇

pj
C(p

1
, …, p

N
)|2



    

PBD: Distance Constraint

 Let C(p) = C(p
1
, p

2
) = |p

1
 – p

2
| - d = 0

 ∇
p1
C(p

1
, p

2
) = (p

1
 – p

2
)/|p

1
 – p

2
|

 ∇
p2

C(p
1
, p

2
) = (p

1
 – p

2
)/|p

1
 – p

2
|

 λ = (|p
1
 – p

2
| - d) / w

1
 + w

2
     where w

1
 = 1/m

1
 and w

2
 = 1/m

2

 Δp
1
 = (w

1
 / (w

1
 + w

2
))(|p

1
 – p

2
| - d)(p

1
 – p

2
)/|p

1
 – p

2
|

 Δp
2
 = (w

2
 / (w

1
 + w

2
))(|p

1
 – p

2
| - d)(p

1
 – p

2
)/|p

1
 – p

2
|

 For equality constraints we always do projection

 For Inequality we project only when C(p) < 0

 Finally we multiply Δp with stiffness k ( Δpk )
 Due to iterations use k' = 1 – (1 – k)1/ns . Stiffness is applied 

linearly after n
s
 iterations



    

PBD: Collisions

 Given old position pi and predicted position qi we 
detect if a ray (p

i
, q

i
) enters some object. If yes we 

compute entry point q
c
 and collision normal n

c

 Next add collision constraint with stiffness k = 1  
C(p) = (p – q

c
) ∙ n

c
 ≥ 0 (ensures non-penetration)

 When scene contains more dynamic bodies we must provide 
constraint from all bodies into one “scene” solver

 For triangle meshes with face (p
1
, p

2
, p

3
): n

c
 = (p

2
 - p

1
) x (p

3 
- p

1
)

 Collision constraint generation is done outside the solver 
loop, to speed up simulation. Artifacts are negligible



    

PBD: Damping

 Velocities are damped

 forall vertices i
 Δv

i
 = v

cm
 + ω x r

i
 - v

i

 v
i
 ←  v

i
 + k

d
Δv

i

 endfor

 Δv
i
 only damps local 

deviations
 Here v

cm
 + ω x r

i
 is the 

velocity due to global body 
motion

 Global “body” variables
 p

cm
 = (∑

i 
p

i 
m

i
)/(∑

i 
m

i
)

 v
cm

 = (∑
i 
v

i 
m

i
)/(∑

i 
m

i
)

 L = ∑
i
r

i
 x (m

i
v

i
)

 J = ∑
i
(rx

i
)(rx

i
)T m

i

 ω = J-1 L
 r

i
 = p

cm
 – p

i

 rx
i
 is cross product matrix



    

Position based Dynamics - Summary

 Control over explicit integration with no typical 
instability problems

 Positions of vertices and objects parts can directly 
be manipulated during the simulation

 Simple handling of general constraints in the 
position based setting

 The explicit position based solver is easy to 
understand and implement.



    

Modeling 

Cloth



    

Cloth: Representation

 Cloth is represented with arbitrary manifold 
triangular mesh (no need for regular lattice)

 Each mesh vertex become a simulation particle

 Given cloth density and thickness we calculate 
mass of each triangle.

 Mass of each particle is sum of 1/3 of the mass of 
each adjacent triangle.

 Constraints are defined along edges and faces

 Cloth tearing is performed on vertices with large 
deformations



    

Cloth: Constraints
 Stretching Constraints

 Along each mesh edge we define fixed stretching constraint 
as simple equality distance constraint (spring)

 C
s
(p

1
, p

2
) = |p

1
 – p

2
| – l

0
    where l

0
 is rest length

 Stiffness k
s
 is usually higher to overcome springiness 

 Bending Constraints
 For each pair of adjacent triangles (p

1
, p

3
, p

2
) and (p

1
, p

2
, p

4
) we 

define a bending constraint
 C

b
(p

1
, p

2
, p

3
, p

4
)= acos(n

1
, n

2
) – φ

0
 where

 n
1
 = ((p2 - p1) x (p3 - p1)) / |(p2 - p1) x (p3 – p1)|

 n
2
 = ((p2 - p1) x (p4 - p1)) / |(p2 - p1) x (p4 – p1)|

n1

n2
p3

p1

p2

p4



    

Cloth: Collisions and Tearing

 Inequality collision constraints is defined as  

 C
b
(q, p

1
, p

2
, p

3
) = (q – p1) ∙ n – h

 q is collided point with face (p
1
, p

2
, p

3
)

 n is face normal
 h – distance to the face.

 Collision with rigid body exerts impulse m
i
p

i
/Δt at p

i

 More involved self-collision detection must be done 
cloth becomes to be tangled



    

Cloth: Overpressure and Tear

 Overpressure inside the closed mesh is modeled as
 C(p

1
, …, p

N
) = ∑

j
(p

j1
 x p

j2
) ∙ p

j3
 – k

p
V

0

 ∇
p1
C = ∑

j
(p

j2
 x p

j3
) + ∑

j
(p

j3
 x p

j1
) + ∑

j
(p

j1
 x p

j2
)

 Cloth Tearing Process
 Whenever the stretching of an edge exceeds a specified 

threshold value, we select one of the edge’s adjacent vertices
 We then put a split plane through that vertex perpendicular to 

the edge direction and split the vertex into 2 new vertices
 All triangles above the split plane are assigned to the original 

vertex while all triangles below are assigned to the duplicate



    

Cloth: Stiffness and Bending

(k
s
; k

b
) = (1; 1)               (k

s
; k

b
) = (0.5; 1)             (k

s
; k

b
) = (0.01; 1)

(k
s
; k

b
) = (1; 0)               (k

s
; k

b
) = (0.5; 0)             (k

s
; k

b
) = (0.01; 0)



    

Cloth: Self Collisions and Balloons



    

Cloth: Examples



    

Modeling 

Hair



    

Hair: Representation

 Each hair strand is modeled as a set of vertices 
connected by edges into series of line segments

 Each vertex is used as simulation particle

 Given material density and strand thickness we 
can calculate volume/mass of each segment. 
Particle mass is average of incident edge masses

 Strand constraints are applied along edges, 
additional (virtual) edges and newly created 
particles

 Hair tearing is performed on vertices with large 
deformations



    

Hair: Constraints

 We model Curly Hair and Straight Hair 

 Stretching Constraints (springs)
 Linear springs between every consecutive particle

 Bending Constraints (springs)
 Linear springs between every other particle
 The edge springs and bending springs together form 

triangles that implicitly represent the orientation of the hair

 Torsion Constraints (springs)
 Twist is modeled by attaching torsion springs that connect 

each particle to a particle three particles away from it

 Altitude Constraints (springs)
 See figure



    



    

Hair: Altitude Springs

 Point/Face Altitude Springs
 Perpendicular to the face starting from the given point
 Length is l = 6V/|u x v| where u and v are the vectors of the 

base triangle and V is the signed volume of the tetrahedron

 Edge/Edge Altitude Springs
 Perpendicular to common spring and bending spring
 Length is l = 6V/|u x v| where u and v are the stretch and 

bend spring and V is the signed volume of the tetrahedron
 For any tetrahedron, the edge/edge or point/face spring 

with minimal length is guaranteed to have all non-negative 
barycentric weights, preventing unbounded forces



    



    

Hair: Linear Strands



    

Hair: Curly Strands



    

The
End


