Computational Logic Description Logic ALC

Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

< A > <

• Ontology – formal conceptualization of a domain

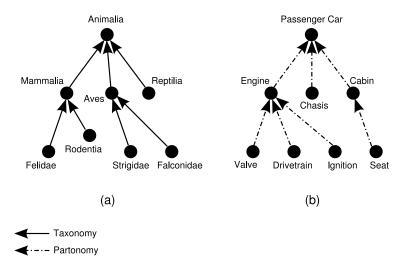
- knowledge base
- represented in formal language
- dealing with terminology in some area of discourse

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)
- TBox terminological data
- ABox assertional data

- Ontology formal conceptualization of a domain
 - knowledge base
 - represented in formal language
 - dealing with terminology in some area of discourse
- Individuals particular things (johnSmith, ba047zz, ...)
- Concepts classes of things (Person, PassangerCar, ...)
- Roles relations between things (owns, hasPart, ...)
- TBox terminological data
- ABox assertional data
- Logic semantics and reasoning

Example Ontologies



э

Vocabulary:

- Individual symbols: $a, b, \ldots \in N_{I}$
- 2 Concept symbols: $A, B, C, D, \ldots \in N_C$
- 3 Role symbols:
 R, *S*, ... ∈ *N*_R

- Atomic concepts: $A, B, \ldots \in N_{C}$
- Complex concepts are smallest set expressions of the forms:
 A | ¬C | C ⊓ D | C ⊔ D | ∃R.C | ∀R.C
 where A ∈ N_C, R ∈ N_R, and C, D are any complex concepts

Subsumption (General Concept Inclusion, GCI): C ⊑ D for any concepts C and D

Individual assertions:

a: C (also written C(a)) for any $a \in N_1$ and any concept C

OR Role assertions:

a,b:R (also written R(a,b)) for any $a,b\in N_{\mathsf{I}}$ and any $R\in N_{\mathsf{R}}$ DL KB is composed of 2 parts:

• TBox \mathcal{T} :

finite set of GCI (terminological knowledge)

2 ABox *A*:

finite set of concept and role assertions (data, assertional knowledge)

- $\mathcal{I} = \left\langle \Delta, \cdot^{\mathcal{I}} \right\rangle$ is interpretation of $\left\langle \mathcal{T}, \mathcal{A} \right\rangle$ if:
 - ullet domain Δ is a non-empty set

•
$$\cdot^{\mathcal{I}}$$
 is a function s.t.:
 $a^{\mathcal{I}} \in \Delta$ for all $a \in N_{\mathsf{I}}$
 $C^{\mathcal{I}} \subseteq \Delta$ for all concepts C
 $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for all $R \in N_{\mathsf{R}}$

• and for any *C*, *D* and *R*, the following restrictions hold: $\neg C^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$ $C \sqcap D^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $C \sqcup D^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $\exists R. C^{\mathcal{I}} = \{x \in \Delta \mid \exists y \in \Delta : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \}$ $\forall R. C^{\mathcal{I}} = \{x \in \Delta \mid \forall y \in \Delta : \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}} \}$

- concept C is satisfiable if $C^{\mathcal{I}} \neq \emptyset$ for some interpretation \mathcal{I}
- \mathcal{I} satisfies (|=) axioms as follows: $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ $\mathcal{I} \models a : C$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ $\mathcal{I} \models a, b : C$ if $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$

Interpretation $\mathcal{I}=\left\langle \Delta,\cdot^{\mathcal{I}}\right\rangle$ is a model of $\left\langle \mathcal{T},\mathcal{A}\right\rangle$ if it satisfies every axiom in \mathcal{T} and \mathcal{A}

KB $\langle \mathcal{T}, \mathcal{A} \rangle$ is satisfiable if it has a model

→ < Ξ → <</p>

Satisfiability of concepts:

C is satisfiable w.r.t. $\langle \mathcal{T}, \mathcal{A} \rangle$ if there is a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A} \rangle$ such that $C^{\mathcal{I}} \neq \emptyset$

Entailment:

 $\langle \mathcal{T}, \mathcal{A} \rangle$ entails $C \sqsubseteq D$ ($\langle \mathcal{T}, \mathcal{A} \rangle \models C \sqsubseteq D$) if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A} \rangle$

Alphabet

æ