

Juraj O
nderik | onderik@sccg.sk

Clipping
Lesson

06

Outline of Lesson 06

 Line clipping algorithms in the CG Pipeline

 Cohen-Sutherland

 Cyrus-Beck

 Nicholl-Lee-Nicholl

7

CG-1 WS03/04

Normalized Scene Depth
• Nonlinear relationship

between ze and zs

– Distortion towards back
of viewing frustrum

– Interpolation in screen space
may lead to errors

• Simple hidden-surface
detection in screen space
– Parallel light rays
– Per-pixel depth comparison
– Z-buffer algorithm

ze

zs

CG-1 WS03/04

Transformations
• Scene composition

– World space

• Viewing frustrum
– Eye position, orientation

8

CG-1 WS03/04

Transformation
• 3D Screen space

– Clipped to frustrum
– Distortion towards far clipping

plane
– Z-buffer occlusion detection

• Projection to 2D

CG-1 WS03/04

Clipping
• Clipping : the process of determining which primitives, or

which parts of the primitives, are within the clipping
volume (in NDC) defined by the camera settings.

• Primitives that fit within the specified view volume pass
through the clipper and are accepted. Primitives that
cannot appear on the display are eliminated, or rejected
(culled).

• A primitive that is only partially within the view volume
must be clipped. This means that we remove the parts of
the primitive which lie outside the viewing volume or
viewing window.

9

CG-1 WS03/04

Where Culling & Clipping Fit In
•Goal #1: Reject objects as early as
possible

– this will save the most work

•Goal #2: Rejection test must be efficient
– we’re trying to avoid work

•Generally perform culling early on
– remove objects wholly outside frustum
– avoids lighting & transformation

•And perform clipping later on
– cut off parts outside viewport
– simplifies rasterization

Scene Database

Culling

Lighting

View Transform

Clipping

Map to Viewport

Rasterization

Video Out

D
at

a

CG-1 WS03/04

View Frustum Culling
• Discard any object outside viewing volume early on

– performed by application (or application framework)

• Viewing volume is formed by 6 planes
– suppose all normals are oriented towards interior
– then the interior is set of all points such that

• Given a set of polygons
– test for intersection with viewing volume
– any polygon not intersecting frustum can be culled

• What’s wrong with this simple algorithm?

i i i ia x b y c z d+ + + ≥ 0

9

CG-1 WS03/04

Where Culling & Clipping Fit In
•Goal #1: Reject objects as early as
possible

– this will save the most work

•Goal #2: Rejection test must be efficient
– we’re trying to avoid work

•Generally perform culling early on
– remove objects wholly outside frustum
– avoids lighting & transformation

•And perform clipping later on
– cut off parts outside viewport
– simplifies rasterization

Scene Database

Culling

Lighting

View Transform

Clipping

Map to Viewport

Rasterization

Video Out

D
at

a

CG-1 WS03/04

View Frustum Culling
• Discard any object outside viewing volume early on

– performed by application (or application framework)

• Viewing volume is formed by 6 planes
– suppose all normals are oriented towards interior
– then the interior is set of all points such that

• Given a set of polygons
– test for intersection with viewing volume
– any polygon not intersecting frustum can be culled

• What’s wrong with this simple algorithm?

i i i ia x b y c z d+ + + ≥ 0

10

CG-1 WS03/04

Inefficient Per-Polygon Processing
•What if a million polygon object is entirely outside
frustum?

–we certainly don’t want to test every one!

CG-1 WS03/04

Culling with Bounding Volumes
•Let’s enclose our object in a convex volume

–bounding sphere
• compact representation
• may not fit object tightly

–bounding box
• axis-aligned or oriented with object

–convex polytope
• allows tightest fit
• most expensive to deal with

•Now test bounding volume first
– if outside frustum, reject object
–otherwise visit individual components

10

CG-1 WS03/04

Inefficient Per-Polygon Processing
•What if a million polygon object is entirely outside
frustum?

–we certainly don’t want to test every one!

CG-1 WS03/04

Culling with Bounding Volumes
•Let’s enclose our object in a convex volume

–bounding sphere
• compact representation
• may not fit object tightly

–bounding box
• axis-aligned or oriented with object

–convex polytope
• allows tightest fit
• most expensive to deal with

•Now test bounding volume first
– if outside frustum, reject object
–otherwise visit individual components

11

CG-1 WS03/04

Hierarchical Bounding Volumes
•And we can do even better with a hierarchy of volumes

•Begin testing at the root node
– if outside, reject all objects
– otherwise, recursively test sub-nodes

•Of course this raises the question: how best to build this hierarchy?

CG-1 WS03/04

Backface Culling
•Even for polygons inside frustum, some may be culled

– if we assume that our objects are closed

•Consider polygon normal
NP = V1 x V2

–Oriented polygon edges V1, V2

– if it’s pointing towards the eye, we may be able to see it
–pointing away means it’s on the opposite side of the object

•Line-of-sight vector N
NP • N

> 0 : surface visible
< 0 : surface not visible

⇒ Draw only visible surfaces

11

CG-1 WS03/04

Hierarchical Bounding Volumes
•And we can do even better with a hierarchy of volumes

•Begin testing at the root node
– if outside, reject all objects
– otherwise, recursively test sub-nodes

•Of course this raises the question: how best to build this hierarchy?

CG-1 WS03/04

Backface Culling
•Even for polygons inside frustum, some may be culled

– if we assume that our objects are closed

•Consider polygon normal
NP = V1 x V2

–Oriented polygon edges V1, V2

– if it’s pointing towards the eye, we may be able to see it
–pointing away means it’s on the opposite side of the object

•Line-of-sight vector N
NP • N

> 0 : surface visible
< 0 : surface not visible

⇒ Draw only visible surfaces

12

CG-1 WS03/04

From Culling to Clipping
• Culling tries to reject objects
wholly outside viewing volume

– typically done by application
–happens prior to lighting, transformation, …

• Now, we want to cut off pieces
outside frustum

– this is clipping

• Clipping happens just prior to
rasterization
–almost always done by graphics system
– frequently implemented in hardware

Scene Database

Culling

Lighting

View Transform

Clipping

Map to Viewport

Rasterization

Video Out

D
at

a

CG-1 WS03/04

Transformations & Clipping
viewing (eye)
coordinates

Clipping Rasterization,
Resolve visibility

NDC normalized
devise coordinates

or clip coord
Projection
transformation

modeling
coordinates Modeling

transformation
Viewing
transformation

world
coordinates

Viewport
transformation coordinates

Screen (Raster)
Display

z
y

x

(-1, -1, -1)

(1, 1, 1)

12

CG-1 WS03/04

From Culling to Clipping
• Culling tries to reject objects
wholly outside viewing volume

– typically done by application
–happens prior to lighting, transformation, …

• Now, we want to cut off pieces
outside frustum

– this is clipping

• Clipping happens just prior to
rasterization
–almost always done by graphics system
– frequently implemented in hardware

Scene Database

Culling

Lighting

View Transform

Clipping

Map to Viewport

Rasterization

Video Out

D
at

a
CG-1 WS03/04

Transformations & Clipping
viewing (eye)
coordinates

Clipping Rasterization,
Resolve visibility

NDC normalized
devise coordinates

or clip coord

Projection
transformation

modeling
coordinates

Modeling
transformation

Viewing
transformation

world
coordinates

Viewport
transformation coordinates

Screen (Raster)
Display

z
y

x

(-1, -1, -1)

(1, 1, 1)

13

CG-1 WS03/04

Why not Per-Pixel Clipping during Rasterization ?

• During rasterization, we visit every pixel
covered by primitive

– if any pixel is outside the viewport, reject it

• What’s wrong with this?
• It can be pretty inefficient

–suppose a 1000 pixel polygon is completely outside viewport

CG-1 WS03/04

Clipping
• After the mapping of the view volume (a frustum for

perspective views; parallelepiped for orthographic views)
to the canonical view volume. All vertices are in NDC.

• Primitives not within the canonical view volume are to be
clipped. Clipping is more efficient and faster when carried
out with NDC.

(-1, -1, -1)

(1, 1, 1)

13

CG-1 WS03/04

Why not Per-Pixel Clipping during Rasterization ?

• During rasterization, we visit every pixel
covered by primitive

– if any pixel is outside the viewport, reject it

• What’s wrong with this?
• It can be pretty inefficient

–suppose a 1000 pixel polygon is completely outside viewport

CG-1 WS03/04

Clipping
• After the mapping of the view volume (a frustum for

perspective views; parallelepiped for orthographic views)
to the canonical view volume. All vertices are in NDC.

• Primitives not within the canonical view volume are to be
clipped. Clipping is more efficient and faster when carried
out with NDC.

(-1, -1, -1)

(1, 1, 1)

14

CG-1 WS03/04

Point Clipping (Culling)
• In 3D view space
• Vertex inside canonical view frustrum ?

– OpenGL: x,y,z [-1…1]
– Direct3D: x,y [-1…1], z [0…1]

CG-1 WS03/04

2D Line Clipping
• 4 different cases

– Endpoints both inside window
– One endpoint inside, one outside window
– Both endpoints outside window, line doesn’t intersect window
– Both endpoints outside window, line intersects window

pa

pe

The CG Pipeline
Geometry Postprocessing
 During geometry postprocessing lines and

triangles are clipped against the window
 We can not write outside the frame buffer

 Clipping should be
 Fast for many primitives
 Implemented on HW (GPU)

Geometry
Postprocessing,

Rasterization

Fragments

Primitives

Cohen-Sutherland

 Main Purpose
 Clipping lines against rectangular (axis aligned)

2D(3D) window

 Algorithm Principle
 Divides a 2D(3D) space into 9(27) regions
 Efficiently determine the (portions of) lines that

are visible in the window
 Clip lines against window edges

Cohen-Sutherland

 9 codes (4bit) for each region: code = b
3
b

2
b

1
b

0

 X cases

 b3 = (x < x
min

) ? 1 : 0

 b2 = (x > x
max

) ? 1 : 0

 Y Cases

 b1 = (y < y
min

) ? 1 : 0

 b0 = (y > y
max

) ? 1 : 0

9
1001

1
0001

5
0101

8
1000

0
0000

4
0100

10
1010

2
0010

6
0110

y
min

x
min

y
maxwindow

x
max

Cohen-Sutherland

 Execution example

 Clip P
1
 against x

min

 Swap P
1
 and P

2

 Clip P
1
 against y

min

 Clip P
1
 against x

max

 Done with P1P2

x
max

9
1001

1
0001

5
0101

8
1000

0
0000

4
0100

10
1010

2
0010

6
0110

y
min

x
min

y
max

windowP
1

P
1

P
2

P
2

P
1

P
1

P
1

Cohen-Sutherland
c2 = code(x2, y2);

while (false) {

c1 = code(x1, y1);

if (c1 & c2 != 0) return false;

else if (c1 | c2 == 0) return true;

else {
if (c1 == 0) { swap(x1, x2); swap(y1, y2); swap(c1, c2); }

else if (c1 ∈ {1, 5, 9}) { x1 = x1 + (x2-x1)*(y
max

-y1) / (y2-y1); y1 = y
max

; }

else if (c1 ∈ {2, 6, 10}) { x1 = x1 + (x2-x1)*(y
min

-y1) / (y2-y1); y1 = y
min

; }

else if (c1 ∈ {4, 5, 6}) { y1 = y1 + (y2-y1)*(x
max

-x1) / (x2-x1); x1 = x
max

; }

else if (c1 ∈ {8, 9, 10}) { y1 = y1 + (y2-y1)*(x
min

-x1) / (x2-x1); x1 = x
min

; }

}

}

Cyrus-Beck

 Main Purpose
 Clipping lines against any convex polygon

 Algorithm Principle
 Find line parameter of intersection with each edge

of polygon
 Update min and max line parameter to be inside

the halfspace of each edge
 If min < max calculate clipped line segment points

Cyrus-Beck

 Intersection of hyperplane and line segment
 Hyperplane (origin O, normal n)
 Line segment (start point P0, end point P1)

 P lies on line segment
 P = P0 + t(P1 - P0) | 0 <= t <= 1

 P lies on hyperplane
 (P - Q)*n = 0

 Solve t = (Q-P0)*n / (P1-P0)*n
 dq = (Q-P0)*n | d1 = (P1-P0)*n → t = dq / d1

P
0

P
1

Q

P

n

Cyrus-Beck

 Instead of calculating new intersected points
Cyrus-Beck operates only on line parameters
t0 and t1 - this is faster

 First set t0 = 0 and t1 = 1 (original line segment)

 For each edge find intersection parameter t
and set
 If (d1 > 0) t0 = max(t, t0) (out-to-in case)
 If (d1 < 0) t1 = min(t,t1) (in-to-out case)

 This will find the smallest intersection interval

 At the end find new P0 and P1 for t0 and t1

Cyrus-Beck

 Input: Convex polygon and line segment

 Output: Clipped line segment being fully inside
given polygon (or nothing)

 Set clipping parameters
 t0 = 0, t1 = 1

t
0

t
1

Cyrus-Beck

 Find intersection parameter t with edge e1

 d1 = (P1-P0)*n1 > 0 → clip t0 (out-to-in case)

 t0 = max(t,t0)
 Since t < t0
 No update is done

- +

e
1

t
0

t
1

t

n
1

Cyrus-Beck

 Find intersection parameter t with edge e2

 d1 = (P1-P0)*n2 < 0 → clip t1 (in-to-out case)
+ -

e
2

t
0

t
1

t

n
2

Cyrus-Beck

 Find intersection parameter t with edge e2

 d1 = (P1-P0)*n2 < 0 → clip t1 (in-to-out case)

 t1 = min(t,t1)
 Since t < t1
 We update t1 = t

e
2

t
0

t
1
=t

+ -

n
2

Liang-Barsky

 Find intersection parameter t with edge e3

 d1 = (P1-P0)*n3 < 0 → clip t1 (in-to-out case)

 t1 = min(t,t1)
 Since t > t1
 No update is done

+

 -

e
3

t
0

t
1

n
3

Cyrus-Beck

 Find intersection parameter t with edge e4

 d1 = (P1-P0)*n4 < 0 → clip t1 (in-to-out case)

+ -

e
4

t
0

t
1t

n
4

Cyrus-Beck

 Find intersection parameter t with edge e4

 d1 = (P1-P0)*n4 < 0 → clip t1 (in-to-out case)

 t1 = min(t,t1)
 Since t < t1
 We update t1 = t

e
4

+ -

t
0

t
1
=t

n
4

Cyrus-Beck

 Find intersection parameter t with edge e5

 d1 = (P1-P0)*n5 > 0 → clip t0 (out-to-in case)
-

 +
e

5

n
5

t
0

t
1

t

Cyrus-Beck

 Find intersection parameter t with edge e5

 d1 = (P1-P0)*n5 > 0 → clip t0 (out-to-in case)

 t0 = max(t,t0)
 Since t > t0
 We update t0 = t

e
5

n
5

t
1

t
0
=t

-

 +

Cyrus-Beck

 No more edges to update with

 If t0 > t1 whole line segment is outside of
polygon

 If t0 <= t1 clip line
 P0' = P0 + t0(P1-P0)
 P1' = P0 + t1(P1-P0) t

1

t
0

Cyrus-Beck

 t
0
 = 0; t

1
 = 1;

 foreach edge e
i
 = (q

i
, n

i
) {

 d
1
 = (p

1
 – p

0
)*n

i
; d

q
 = (q

i
 – p

0
)*n

i
;

 if (d
1
> 0) { t = d

q
/d

1
; t

0
 = max(t, t

0
); } else

 if (d
1
< 0) { t = d

q
/d

1
; t

1
 = min(t, t

1
); } else

 if ((p
0
 - q

i
)*n

i
 < 0) return false; // line is outside of poly

 }

 if (t
0
 < t

1
) return true; else return false;

Nicholl-Lee-Nicholl

 Main Purpose
 Clipping lines against rectangular (axis aligned) 2D

only window

 Algorithm Principle
 Categorize first point of line segment similarly to

Cohen-Sutherland
 Virtual cast 4 rays from P0 through 4 corners of

window and categorize all regions between rays.
In each segment we know which window edges we
have to clip with

 Clip line segment with selected edges

Nicholl-Lee-Nicholl

 Window region

TTT

R

R

R

BBB

L

L

L

P
0

Nicholl-Lee-Nicholl

 Corner region

T

TR

TR

TB

TB
LB

TL

P
0

Nicholl-Lee-Nicholl

 Edge region

LT

LR

LB
LB

L

L

P
0

LT

LR

LR

L

Nicholl-Lee-Nicholl

 Edge region Example

LT

LR

LB
LB

L

L

P
0

LT

LR

LR

L

P
1

Nicholl-Lee-Nicholl

Nicholl-Lee-Nicholl

Clipping Algorithms Summary

 Cohen-Sutherland
 Repeated clipping is expensive
 Best when trivial accepts/rejects occur often

 Cyrus-Beck
 Cheap intersection parameter calculation
 Points are clipped only once at the and
 Best when most lines have to be clipped

 Liang-Barsky - optimized Cyrus-Beck for window

 Nicholl et. al. - Fastest, not applicable in 3D

The
End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

