Computational Logic Propositional Logic

Martin Baláž

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

Alphabet

An alphabet contains

- Propositional variablesp, q, r, . . .
- Logical connectives $\neg, \lor, \land, \Rightarrow, \Leftrightarrow, \dots$
- Punctuation symbols (,)

Formula

A formula is

- an atom (propositional variable)
- ¬Φ if Φ is a formula
- $(\Phi \wedge \Psi)$ if Φ and Ψ are formulas
- $(\Phi \lor \Psi)$ if Φ and Ψ are formulas
- $(\Pi \to \Psi)$ if Φ and Ψ are formulas
- $(\Pi \leftrightarrow \Psi)$ if Φ and Ψ are formulas
- •

A language is a set \mathcal{L} of all formulas.

Valuation

A valuation is a mapping $v \colon \mathcal{L} \mapsto \{0,1\}$ such that

- $v(\neg \Phi) = 1$ iff $v(\Phi) = 0$
- $v(\Phi \wedge \Psi) = 1$ iff $v(\Phi) = 1$ and $v(\Psi) = 1$
- $v(\Phi \lor \Psi) = 1$ iff $v(\Phi) = 1$ or $v(\Psi) = 1$
- $v(\Phi \rightarrow \Psi) = 1$ iff $v(\Phi) = 0$ or $v(\Psi) = 1$
- $v(\Phi \leftrightarrow \Psi) = 1 \text{ iff } v(\Phi) = v(\Psi)$

A formula Φ is *satisfiable* iff there exists a valuation v such that $v(\Phi)=1$.

A formula Φ is a *tautology* iff for all valuations v holds $v(\Phi) = 1$.

Proposition

A formula Φ is not satisfiable iff $\neg \Phi$ is a tautology.

Entailment

A set of formulas T entails a formula Φ (denoted $T \models \Phi$) iff for all valuations v holds $v(\Phi) = 1$ whenever $v(\Psi) = 1$ for all Ψ in T.

Proposition

A formula Φ is a tautology iff $\emptyset \models \Phi$.

Proposition

$$T \cup \{\Phi\} \models \Psi \text{ iff } T \models \Phi \rightarrow \Psi.$$

Propositional Calculus

A inference rule is an expression of the form

$$\frac{\Phi_1,\ldots,\Phi_n}{\Phi}$$

where $n \geq 0$, Φ_1, \ldots, Φ_n and Φ are formulas. Φ_1, \ldots, Φ_n are called *premises* and Φ is called the *conclusion*.

An axiom is an inference rule with empty set of premises. A propositional calculus is a language with a set of inference rules.

Propositional Calculus

A formula Φ is *provable* from a set of formulas T (denoted by $T \vdash \Phi$) iff there exists a sequence of formulas $\Phi_1, \ldots, \Phi_n = \Phi$, $n \geq 1$, such that for all formulas Φ_i , $1 \leq i \leq n$, holds

- $\Phi_i \in T$
- ullet Φ_i is the conclusion of an inference rule with premises in $\{\Phi_1,\ldots,\Phi_{i-1}\}$

A propositional calculus is sound iff $\vdash \Phi$ implies $\models \Phi$. A propositional calculus is complete iff $\models \Phi$ implies $\vdash \Phi$.

Hilbert System

Axioms

•
$$(P \rightarrow (Q \rightarrow P))$$

$$\bullet \ ((P \to (Q \to R)) \to ((P \to Q) \to (P \to R)))$$

$$\bullet \ (\neg P \to \neg Q) \to (Q \to P))$$

Inference Rules

Modus Ponens

$$\frac{P, (P \to Q)}{Q}$$

Example

Prove:

$$(p \rightarrow p)$$

Proof:

Sequent Calculus

A sequent is an expression of the form

$$\langle \Phi_1, \ldots, \Phi_m \Rightarrow \Psi_1, \ldots, \Psi_n \rangle$$

where $m \geq 0, n \geq 0$. Φ_1, \ldots, Φ_n are called *antecendents* and Ψ_1, \ldots, Ψ_n are called *succendents*.

A inference rule is an expression of the form

$$\frac{S_1,\ldots,S_n}{S}$$

where $n \ge 0$, S_1, \ldots, S_n and S are sequents. S_1, \ldots, S_n are called *premises* and S is called the *conclusion*.

An axiom is an inference rule with empty set of premises. A sequent calculus is a language with a set of inference rules.

Sequent Calculus

A formula Φ is *provable* from a set of formulas T (denoted by $T \vdash \Phi$) iff there exists a sequence of sequents $S_1, \ldots, S_n = \langle \Rightarrow \Phi \rangle$, $n \geq 1$, such that for all sequents S_i , $1 \leq i \leq n$, holds

- $S_i = \langle \Gamma \Rightarrow \Delta, \Phi \rangle$ for some $\Phi \in T$
- S_i is the conclusion of an inference rule with premises in $\{S_1,\ldots,S_{i-1}\}$

A sequent calculus is *sound* iff $\vdash \Phi$ implies $\models \Phi$.

A sequent calculus is *complete* iff $\models \Phi$ implies $\vdash \Phi$.

Gentzen System

- Axiom of Identity $\langle \Gamma, \phi \Rightarrow \Delta, \phi \rangle$
- Negation $\langle \Gamma \Rightarrow \Delta, \phi \rangle / \langle \Gamma, \neg \phi \Rightarrow \Delta \rangle$ $\langle \Gamma, \phi \Rightarrow \Delta \rangle / \langle \Gamma \Rightarrow \Delta, \neg \phi \rangle$
- Conjunction $\langle \Gamma, \phi \Rightarrow \Delta \rangle / \langle \Gamma, \phi \wedge \psi \Rightarrow \Delta \rangle \quad \langle \Gamma, \phi \Rightarrow \Delta \rangle / \langle \Gamma, \psi \wedge \phi \Rightarrow \Delta \rangle$ $\langle \Gamma \Rightarrow \Delta, \phi \rangle, \langle \Gamma \Rightarrow \Delta, \psi \rangle / \langle \Gamma \Rightarrow \Delta, \phi \wedge \psi \rangle$
- Disjunction $\langle \Gamma \Rightarrow \Delta, \phi \rangle / \langle \Gamma \Rightarrow \Delta, \phi \vee \psi \rangle \quad \langle \Gamma \Rightarrow \Delta, \phi \rangle / \langle \Gamma \Rightarrow \Delta, \psi \vee \phi \rangle$ $\langle \Gamma, \phi \Rightarrow \Delta \rangle, \langle \Gamma, \psi \Rightarrow \Delta \rangle / \langle \Gamma, \phi \vee \psi \Rightarrow \Delta \rangle$
- Implication $\langle \Gamma, \phi \Rightarrow \Delta, \psi \rangle / \langle \Gamma \Rightarrow \Delta, \phi \rightarrow \psi \rangle$ $\langle \Gamma \Rightarrow \Delta, \phi \rangle, \langle \Pi, \psi \Rightarrow \Lambda \rangle / \langle \Gamma, \Pi, \phi \rightarrow \psi \Rightarrow \Delta, \Lambda \rangle$
- Weakening Rule $\langle \Gamma \Rightarrow \Delta \rangle / \langle \Gamma \Rightarrow \Delta, \phi \rangle$ $\langle \Gamma \Rightarrow \Delta \rangle / \langle \Gamma, \phi \Rightarrow \Delta \rangle$
- Cut $\langle \Gamma \Rightarrow \Delta, \phi \rangle$, $\langle \Pi, \phi \Rightarrow \Lambda \rangle / \langle \Gamma, \Pi \Rightarrow \Delta, \Lambda \rangle$

Example

Prove:

$$p \vee \neg p$$

Proof:

$$\lozenge$$
 $\langle \Rightarrow p, p \vee \neg p \rangle$