
Lecture 1: First-Order Logic
2-AIN-108 Computational Logic

Martin Baláº, Martin Homola

Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

25 Sep 2012

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax

De�nition (Alphabet)

An alphabet contains

Set of variables

V = {x , y , z , . . . }
Set of function symbols

F = {f , g , h, . . . }
Set of predicate symbols

P = {p, q, r , . . . }
Logical connectives

¬,∨,∧,→,↔
Quanti�ers

∀ ∃
Auxiliary symbols

() ,

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

De�nition (Arity)

Given an alphabet with function symbols F and predicate symbols

P , arity is any function arity : F ∪ P 7→ N0.

Note:

Arity speci�es how many �arguments� each function and

predicate required.

Functions (predicates) of arity 0, 1, 2, 3, and so on are called:

nullary, unary, binary, ternary, etc.

Nullary predicates are also called logical constants.

Nullary functions are also called constant terms.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

De�nition (Term)

Given an alphabet and an arity function, a term is any of the

following:

a variable;

a constant;

an expression f (t1, . . . , tn) if f is a function symbol with arity

n and t1, . . . , tn are terms.

De�nition (Atom)

Given an alphabet and an arity function, an atom is an expression

p(t1, . . . , tn) where p is a predicate symbol with arity n and

t1, . . . , tn are terms.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

De�nition (Formulae)

Given an alphabet and an arity function, a formula is any expression

of the following forms:

an atom;

¬Φ;

(Φ ∧Ψ);

(Φ ∨Ψ);

(Φ→ Ψ);

(Φ↔ Ψ);

(∀x)Φ;

(∃x)Φ;

where Φ,Ψ are formulae, and x is a variable.

De�nition (Language of FOL)

The language of First Order Logic over some alphabet and the

respective arity function is the set L of all formulae.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

Note: from now on we will always assume some �xed FOL language

L over some alphabet with the respective arity function.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

De�nition (Ground expressions)

A term, atom, or a formula is ground if it does not contain any

variables.

De�nition (Free vs. bounded variable occurrence)

An occurrence of some variable x in a formula Φ is free if it is not

preceded by (∃x) nor by (∀x). The occurence is bounded otherwise.

De�nition (Closed formulae)

A formula Φ is closed if it does not contain any free occurrence of

any variable.

Note: from now on we will assume that all formulae are closed.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Syntax (cont.)

De�nition (Theory)

A �rst order theory (or just theory) T is a �nite set of (closed)

formulae.

Note: we will look at theories as knowledge bases: a theory T is a

set of formulae that describes some situation or some problem.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example

Let us assume the following situation: Jack killed John. If someone

killed somebody else, he is a murderer. Murderers go to jail. We

may encode this in FOL theory T :

Killed(Jack, John)

(∀x)(∃y)(Killed(x, y))→ Murderer(x)

(∀x)(Murderer(x)→ Jail(x))

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Semantics

De�nition (First order structures)

A structure is a pair D = (D, I) where

D, called domain, is a nonempty set;

I , called interpretation, is a function s.t.:

I (f) is a function f I : Darity(f) → D;
I (t) is t I = f I (t I

1
, . . . , t In) for any ground term of the form

t = f (t1, . . . , tn);
I (p) is a relation pI ⊆ Darity(p).

Note: D0 = {∅}, hence there are two possible interpretations of

each logical constant c : either c I = {∅} (i.e., c is true) or c I = ∅
(i.e., c is false).

Note: similarly for a constant term t, t I : D0 → D, i.e., each

constant term is interpreted by a constant function which returns

one of the elements of D.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Note: sometimes structures are de�ned also w.r.t. a signature

σ = (F ,P, arity), however we always assume some �xed language

so we may abstract from this.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Semantics (cont.)

De�nition (Structure extension)

An extension of a structure D = (D, I) w.r.t. a variable x is a

structure D′ = (D, I ′) where I ′ is identical to I except for in

addition I ′(x) = d for some element d ∈ D.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

FOL: Semantics (cont.)

De�nition (Satisfaction |=)

A formula Ξ is satis�ed w.r.t. a structure D (denoted by D |= Φ)
based type of Ξ:

p(t1, . . . , tn): D |= p(t1, . . . , tn) i� (t I
1
, . . . , t In) ∈ pI ;

¬Φ: D |= ¬Φ i� D 6|= Φ;

Φ ∧Ψ: D |= (Φ ∧Ψ) i� D |= Φ and D |= Ψ;

if Φ ∨Ψ: D |= (Φ ∨Ψ) i� D |= Φ or D |= Ψ;

Φ→ Ψ: D |= (Φ→ Ψ) i� D 6|= Φ or D |= Ψ;

Φ↔ Ψ: D |= (Φ↔ Ψ) i� (D |= Φ i� D |= Ψ);

(∃x)Φ: D |= (∃x)Φ i� D′ |= Φ for some ext. D′ of D w.r.t. x ;

(∀x)Φ: D |= (∀x)Φ i� D′ |= Φ for all ext. D′ of D w.r.t. x ;

where Φ,Ψ are any formulae and p(t1, . . . , tn) is any ground atom.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Semantics (cont.)

De�nition (Model)

A structure D is a model of Φ if D |= Φ; D is a model of a theory

T (denoted D |= T) if D |= Φ for all Φ ∈ T .

De�nition (Satis�ability)

A formula (or theory) is satis�able, if it has a model.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Semantics (cont.)

De�nition (Entailment)

A theory T entails a formula Φ (denoted T |= Φ) if for each model

D of T we have D |= Φ.

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example (cont.)

Is there a model of our theory T? T was:

Killed(Jack, John)

(∀x)(∃y)Killed(x, y)→ Murderer(x)

(∀x)Murderer(x)→ Jail(x)

Let us construct D = ({s}, I) with:

JackI = s

JohnI = s

KilledI = {〈s, s〉}
MurdererI = {〈s〉}

JailI = {〈s〉}

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example (cont.)

Is there a model of our theory T? T was:

Killed(Jack, John)

(∀x)(∃y)Killed(x, y)→ Murderer(x)

(∀x)Murderer(x)→ Jail(x)

Let us construct D = ({s}, I) with:

JackI = s

JohnI = s

KilledI = {〈s, s〉}
MurdererI = {〈s〉}

JailI = {〈s〉}

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example (cont.)

Is there a model of our theory T? T was:

Killed(Jack, John)

(∀x)(∃y)Killed(x, y)→ Murderer(x)

(∀x)Murderer(x)→ Jail(x)

Let us construct D = ({s}, I) with:

JackI = s

JohnI = s

KilledI = {〈s, s〉}
MurdererI = {〈s〉}

JailI = {〈s〉}

Is D a model of T?

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example (cont.)

Is there a model of our theory T? T was:

Killed(Jack, John)

(∀x)(∃y)Killed(x, y)→ Murderer(x)

(∀x)Murderer(x)→ Jail(x)

Let us construct D = ({s}, I) with:

JackI = s

JohnI = s

KilledI = {〈s, s〉}
MurdererI = {〈s〉}

JailI = {〈s〉}

Is is our indented model of T?

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

Example (cont.)

Is there a model of our theory T? T was:

Killed(Jack, John)

(∀x)(∃y)Killed(x, y)→ Murderer(x)

(∀x)Murderer(x)→ Jail(x)

Let us construct D = ({s}, I) with:

JackI = s

JohnI = s

KilledI = {〈s, s〉}
MurdererI = {〈s〉}

JailI = {〈s〉}

Does if holds T |= Murderer(Jack)?

Martin Baláº, Martin Homola Lecture 1: First-Order Logic

