Lecture 1: First-Order Logic 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

25 Sep 2012

FOL: Syntax

Definition (Alphabet)

An alphabet contains

- Set of variables $V = \{x, y, z, \dots\}$
- Set of function symbols $F = \{f, g, h, \dots\}$
- Set of predicate symbols $P = \{p, q, r, \dots\}$
- Logical connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$
- Quantifiers $\forall \exists$
- Auxiliary symbols() ,

Definition (Arity)

Given an alphabet with function symbols F and predicate symbols P, arity is any function $arity \colon F \cup P \mapsto \mathbb{N}_0$.

Note:

- Arity specifies how many "arguments" each function and predicate required.
- Functions (predicates) of arity 0, 1, 2, 3, and so on are called: nullary, unary, binary, ternary, etc.
- Nullary predicates are also called logical constants.
- Nullary functions are also called constant terms.

Definition (Term)

Given an alphabet and an arity function, a term is any of the following:

- a variable;
- a constant;
- an expression $f(t_1, ..., t_n)$ if f is a function symbol with arity n and $t_1, ..., t_n$ are terms.

Definition (Atom)

Given an alphabet and an arity function, an atom is an expression $p(t_1, \ldots, t_n)$ where p is a predicate symbol with arity n and t_1, \ldots, t_n are terms.

Definition (Formulae)

Given an alphabet and an arity function, a formula is any expression of the following forms:

where Φ, Ψ are formulae, and x is a variable.

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set \mathcal{L} of all formulae.

Note: from now on we will always assume some fixed FOL language $\mathcal L$ over some alphabet with the respective arity function.

Definition (Ground expressions)

A term, atom, or a formula is ground if it does not contain any variables.

Definition (Free vs. bounded variable occurrence)

An occurrence of some variable x in a formula Φ is free if it is not preceded by $(\exists x)$ nor by $(\forall x)$. The occurrence is bounded otherwise.

Definition (Closed formulae)

A formula Φ is closed if it does not contain any free occurrence of any variable.

Note: from now on we will assume that all formulae are closed.

Definition (Theory)

A first order theory (or just theory) T is a finite set of (closed) formulae.

Note: we will look at theories as knowledge bases: a theory T is a set of formulae that describes some situation or some problem.

Example

Let us assume the following situation: Jack killed John. If someone killed somebody else, he is a murderer. Murderers go to jail. We may encode this in FOL theory T:

$$\begin{aligned} & \mathsf{Killed}(\mathsf{Jack},\mathsf{John}) \\ (\forall \mathsf{x})(\exists \mathsf{y})(\mathsf{Killed}(\mathsf{x},\mathsf{y})) &\to \mathsf{Murderer}(\mathsf{x}) \\ (\forall \mathsf{x})(\mathsf{Murderer}(\mathsf{x}) &\to \mathsf{Jail}(\mathsf{x})) \end{aligned}$$

FOL: Semantics

Definition (First order structures)

A structure is a pair $\mathcal{D} = (D, I)$ where

- D, called domain, is a nonempty set;
- I, called interpretation, is a function s.t.:
 - I(f) is a function $f^I: D^{arity(f)} \to D$;
 - I(t) is $t^l = f^l(t_1^l, \dots, t_n^l)$ for any ground term of the form $t = f(t_1, \dots, t_n)$;
 - I(p) is a relation $p^I \subseteq D^{arity(p)}$.

Note: $D^0 = \{\emptyset\}$, hence there are two possible interpretations of each logical constant c: either $c^l = \{\emptyset\}$ (i.e., c is true) or $c^l = \emptyset$ (i.e., c is false).

Note: similarly for a constant term t, $t^I:D^0\to D$, i.e., each constant term is interpreted by a constant function which returns one of the elements of D.

Note: sometimes structures are defined also w.r.t. a signature $\sigma=(F,P,arity)$, however we always assume some fixed language so we may abstract from this.

FOL: Semantics (cont.)

Definition (Structure extension)

An extension of a structure $\mathcal{D} = (D, I)$ w.r.t. a variable x is a structure $\mathcal{D}' = (D, I')$ where I' is identical to I except for in addition I'(x) = d for some element $d \in D$.

FOL: Semantics (cont.)

Definition (Satisfaction \models)

A formula Ξ is satisfied w.r.t. a structure \mathcal{D} (denoted by $\mathcal{D} \models \Phi$) based type of Ξ :

$$\begin{split} \rho(t_1,\dots,t_n) &: \ \mathcal{D} \models \rho(t_1,\dots,t_n) \ \text{iff} \ (t_1^I,\dots,t_n^I) \in \rho^I \,; \\ \neg \Phi &: \ \mathcal{D} \models \neg \Phi \ \text{iff} \ \mathcal{D} \not\models \Phi \,; \\ \Phi \land \Psi &: \ \mathcal{D} \models (\Phi \land \Psi) \ \text{iff} \ \mathcal{D} \models \Phi \ \text{and} \ \mathcal{D} \models \Psi \,; \\ \text{if} \ \Phi \lor \Psi &: \ \mathcal{D} \models (\Phi \lor \Psi) \ \text{iff} \ \mathcal{D} \models \Phi \ \text{or} \ \mathcal{D} \models \Psi \,; \\ \Phi \to \Psi &: \ \mathcal{D} \models (\Phi \to \Psi) \ \text{iff} \ \mathcal{D} \not\models \Phi \ \text{or} \ \mathcal{D} \models \Psi \,; \\ \Phi \leftrightarrow \Psi &: \ \mathcal{D} \models (\Phi \leftrightarrow \Psi) \ \text{iff} \ (\mathcal{D} \models \Phi \ \text{iff} \ \mathcal{D} \models \Psi) \,; \\ (\exists x)\Phi &: \ \mathcal{D} \models (\exists x)\Phi \ \text{iff} \ \mathcal{D}' \models \Phi \ \text{for some ext.} \ \mathcal{D}' \ \text{of} \ \mathcal{D} \ \text{w.r.t.} \ x \,; \\ (\forall x)\Phi &: \ \mathcal{D} \models (\forall x)\Phi \ \text{iff} \ \mathcal{D}' \models \Phi \ \text{for all ext.} \ \mathcal{D}' \ \text{of} \ \mathcal{D} \ \text{w.r.t.} \ x \,; \end{split}$$

Semantics (cont.)

Definition (Model)

A structure \mathcal{D} is a model of Φ if $\mathcal{D} \models \Phi$; \mathcal{D} is a model of a theory \mathcal{T} (denoted $\mathcal{D} \models \mathcal{T}$) if $\mathcal{D} \models \Phi$ for all $\Phi \in \mathcal{T}$.

Definition (Satisfiability)

A formula (or theory) is satisfiable, if it has a model.

Semantics (cont.)

Definition (Entailment)

A theory T entails a formula Φ (denoted $T \models \Phi$) if for each model \mathcal{D} of T we have $\mathcal{D} \models \Phi$.

Is there a model of our theory T? T was:

$$\begin{aligned} & \mathsf{Killed}(\mathsf{Jack},\mathsf{John}) \\ & (\forall \mathsf{x})(\exists \mathsf{y}) \mathsf{Killed}(\mathsf{x},\mathsf{y}) \to \mathsf{Murderer}(\mathsf{x}) \\ & (\forall \mathsf{x}) \mathsf{Murderer}(\mathsf{x}) \to \mathsf{Jail}(\mathsf{x}) \end{aligned}$$

Is there a model of our theory T? T was:

$$\mathsf{Killed}(\mathsf{Jack},\mathsf{John})$$

$$(\forall \mathsf{x})(\exists \mathsf{y})\mathsf{Killed}(\mathsf{x},\mathsf{y}) \to \mathsf{Murderer}(\mathsf{x})$$

$$(\forall \mathsf{x})\mathsf{Murderer}(\mathsf{x}) \to \mathsf{Jail}(\mathsf{x})$$
Let us construct $\mathcal{D} = (\{s\},I)$ with:
$$\mathsf{Jack}^I = s$$

$$\mathsf{John}^I = s$$

$$\mathsf{Killed}^I = \{\langle s,s \rangle\}$$

$$\mathsf{Murderer}^I = \{\langle s \rangle\}$$

$$\mathsf{Jail}^I = \{\langle s \rangle\}$$

Is there a model of our theory T? T was:

$$\mathsf{John}^I = s$$
 $\mathsf{Killed}^I = \{\langle s, s \rangle\}$
 $\mathsf{Murderer}^I = \{\langle s \rangle\}$
 $\mathsf{Jail}^I = \{\langle s \rangle\}$

Is \mathcal{D} a model of T?

Is there a model of our theory T? T was:

$$\begin{array}{c} \mathsf{Killed}(\mathsf{Jack},\mathsf{John}) \\ (\forall \mathsf{x})(\exists \mathsf{y})\mathsf{Killed}(\mathsf{x},\mathsf{y}) \to \mathsf{Murderer}(\mathsf{x}) \\ (\forall \mathsf{x})\mathsf{Murderer}(\mathsf{x}) \to \mathsf{Jail}(\mathsf{x}) \\ \\ \mathsf{Let} \ \mathsf{us} \ \mathsf{construct} \ \mathcal{D} = (\{s\},I) \ \mathsf{with} \colon \\ \\ \mathsf{Jack}^I = s \\ \mathsf{John}^I = s \end{array}$$

$$\mathsf{Murderer}^I = \{\langle s \rangle\}$$

$$\mathsf{Jail}^I = \{\langle s \rangle\}$$

 $\mathsf{Killed}^I = \{\langle s, s \rangle\}$

Is is our indented model of T?

Is there a model of our theory T? T was:

Does if holds $T \models Murderer(Jack)$?

