Lecture 3: Ontologies and Description Logics 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

9 Oct 2012

Ontology (Definition)

Definition (Philosophy)

Ontology a study of the nature of being, existence, or reality, as well as of basic categories of being and their relations.

Note: It is a philosophical study of entities that exist.

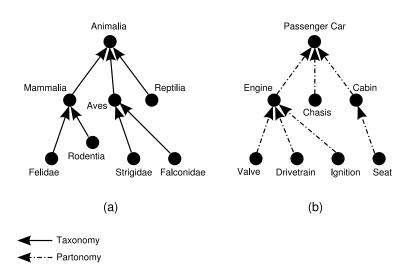
Definition (Computer Science)

Ontology is a formal conceptualization of a domain.

Note: It is a description of entities and their relations in a given domain, recorded in a formal language.

Note: In knowledge representation and computational logic we consider a formal language with logical semantics.

Example Ontologies



Computational Problems

Is my ontology consistent? Are all concepts meaningful? Is subsumption implied by the ontology? Is a given object an instance of a given class?

\mathcal{ALC} DL: Syntax

Definition (Vocabulary)

A DL vocabulary consists of three mutually disjoint countably infinite sets:

- set of individuals $N_I = \{a, b, \dots\}$;
- 2 set of atomic concepts $N_C = \{A, B, \dots\}$;
- \odot set of roles $N_R = \{R, S, \dots\}$.

\mathcal{ALC} DL: Syntax

Definition (Vocabulary)

A DL vocabulary consists of three mutually disjoint countably infinite sets:

- set of individuals $N_{\mathsf{I}} = \{a, b, \dots\}$;
- 2 set of atomic concepts $N_C = \{A, B, \dots\}$;
- \bullet set of roles $N_R = \{R, S, \dots\}$.

Note: from now on, we always assume that some suitable vocabulary is given, containing all the symbols we use in our concepts and knowledge bases.

Definition (Complex concepts)

Complex concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_C$, $R \in N_R$, and C, D are complex concepts.

Definition (Complex concepts)

Complex concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_C$, $R \in N_R$, and C, D are complex concepts.

Note: A concept is any atomic or complex concept constructed on top of a given vocabulary.

Definition (Complex concepts)

Complex concepts are recursively constructed as a smallest set of expressions of the forms:

$$C, D ::= A \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists R.C \mid \forall R.C$$

where $A \in N_C$, $R \in N_R$, and C, D are complex concepts.

Note: A concept is any atomic or complex concept constructed on top of a given vocabulary.

Note: Concept constructors of \mathcal{ALC} : complement (\neg) , intersection (\sqcap) , union (\sqcup) , existential restriction (\exists) , and value restriction (\sqcup) .

Note: Other DL different from \mathcal{ALC} use different sets of constructors.

Definition (TBox)

A TBox $\mathcal T$ is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

Definition (TBox)

A TBox $\mathcal T$ is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

Definition (ABox)

A ABox ${\mathcal T}$ is a finite set of assertion axioms ϕ of the form:

$$\phi ::= a : C \mid a, b : R$$

where $a, b \in N_I$, $R \in N_R$, and C is any concept.

Definition (TBox)

A TBox $\mathcal T$ is a finite set of GCI axioms ϕ of the form:

$$\phi ::= C \sqsubseteq D$$

where C, D are any concepts.

Definition (ABox)

A ABox ${\mathcal T}$ is a finite set of assertion axioms ϕ of the form:

$$\phi ::= a : C \mid a, b : R$$

where $a, b \in N_I$, $R \in N_R$, and C is any concept.

Note: GCI stands for General Concept Inclusions, they are general subsumption axioms. The two types of assertions are concept assertion and role assertion, respectively.

Definition (DL Knowledge Base)

A DL knowledge base (KB) $\mathcal{K}=(\mathcal{T},\mathcal{A})$ is a pair consisting of a TBox and an ABox.

Note: TBox contains the intentional part of the KB: the descriptions of all concepts and their relations. ABox contains the extensional part: empirical evidence, facts.

Note: Ontologies can be represented by DL KB. But ontologies can also be represented in other languages (including FOL).

Example (cont.)

 \mathcal{T} :

```
Carnivore 

☐ Herbivore 
☐ Animal
    Carnivore \sqsubseteq \forall eats.(Animal \sqcup AnimalPart)
Herbivore \sqsubseteq \forall eats. \neg (Animal \sqcup \exists partOf.Animal)
                     Cow 

☐ Hebivore
               Brain \square \exists partOf.Aminal
         CowBrain \sqsubseteq Brain \sqcap \exists partOf.Cow
                    Plant □ ¬Animal
                       Grass 

□ Plant
```

 \mathcal{A} :

daisy : Cow g3457 : Grass

daisy, g3457: eats

\mathcal{ALC} DL: Semantics

Definition (Interpretation)

An interpretation of a given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ which contains:

- a domain $\Delta^{\mathcal{I}} \neq \emptyset$;
- an interpretation function $\cdot^{\mathcal{I}}$ s.t.: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for all $a \in N_{\text{I}}$; $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_{\text{C}}$; $R^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $R \in N_{\text{R}}$;
- and for any C, D and R, the interpretation of complex concepts is recursively defined as follows:

$$\neg C^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}};
C \sqcap D^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}
C \sqcup D^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}
\exists R. C^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}
\forall R. C^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \forall y \in \Delta^{\mathcal{I}} : \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}}\}$$

\mathcal{ALC} DL: Semantics

Definition (Satisfaction |=)

Given an axiom ϕ , an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies ϕ depending on its type:

$$C \sqsubseteq D$$
: $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

$$a: C: \mathcal{I} \models a: C \text{ iff } a^{\mathcal{I}} \in C^{\mathcal{I}}$$

$$a, b : R : \mathcal{I} \models a, b : R \text{ iff } \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$$

\mathcal{ALC} DL: Semantics

Definition (Satisfaction \models)

Given an axiom ϕ , an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies ϕ depending on its type:

$$C \sqsubseteq D$$
: $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

$$a: C: \mathcal{I} \models a: C \text{ iff } a^{\mathcal{I}} \in C^{\mathcal{I}}$$

$$a, b : R : \mathcal{I} \models a, b : R \text{ iff } \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$$

Definition (Model)

An interpretation $\mathcal{I} = \left\langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \right\rangle$ is a model of a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if it satisfies every axiom in \mathcal{T} and \mathcal{A} .

Basic Decision Problems

Definition (Decision Problems)

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and two concepts \mathcal{C} , \mathcal{D} , we say that:

- C is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $\mathcal{C}^{\mathcal{I}} \neq \emptyset$;
- C is subsumed by D w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \sqsubseteq D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- C and D are equivalent w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \equiv D$) iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- C and D are disjoint w.r.t. K iff $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ in every model \mathcal{I} of K.

Basic Decision Problems

Definition (Decision Problems)

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, and two concepts \mathcal{C} , \mathcal{D} , we say that:

- C is satisfiable w.r.t. \mathcal{K} iff there is a model \mathcal{I} of \mathcal{K} s.t. $\mathcal{C}^{\mathcal{I}} \neq \emptyset$;
- C is subsumed by D w.r.t. \mathcal{K} (denoted $\mathcal{K} \models C \sqsubseteq D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K} ;
- C and D are equivalent w.r.t. K (denoted $K \models C \equiv D$) iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of K;
- C and D are disjoint w.r.t. K iff $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ in every model \mathcal{I} of K.

Note: If \mathcal{K} is empty, then satisfiability, subsumption, equivalence, and disjointness of concepts is defined in general by the definition. In such a case we omit " $\mathcal{K} \models$ " from the notation.

Example (cont.)

```
Carnivore □ Herbivore □ Animal

Carnivore □ ∀eats.(Animal □ AnimalPart)

Herbivore □ ∀eats.¬(Animal □ ∃partOf.Animal)

Cow □ Hebivore

Brain □ ∃partOf.Aminal

CowBrain □ Brain □ ∃partOf.Cow
```

Example (cont.)

```
Carnivore ☐ Herbivore ☐ Animal
Carnivore ☐ ∀eats.(Animal ☐ AnimalPart)
Herbivore ☐ ∀eats.¬(Animal ☐ ∃partOf.Animal)

Cow ☐ Hebivore

Brain ☐ ∃partOf.Aminal

CowBrain ☐ Brain ☐ ∃partOf.Cow

MadCow ☐ Cow ☐ ∃eats.CowBrain
```

Let us introduce some syntactic sugar:

Definition (Top and bottom concepts)

The top (\top) and bottom (\bot) concepts are defined as syntactic shorthands:

- \top is a placeholder for $A \sqcup \neg A$;
- \perp is a placeholder for $A \sqcap \neg A$;

where A is a new atomic concept not appearing elsewhere in the given KB or a any given concept.

Lemma (Top and bottom semantics)

In any interpretation \mathcal{I} , $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\bot^{\mathcal{I}} = \emptyset$.

Reduction lemmata:

Lemma

Given a DL KB K and a concept C: C is satisfiable w.r.t. K iff $K \not\models C \sqsubseteq \bot$.

Reduction lemmata:

Lemma

Given a DL KB K and a concept C: C is satisfiable w.r.t. K iff $K \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB K and concepts C, D: $K \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. K.

Reduction lemmata:

Lemma

Given a DL KB K and a concept C: C is satisfiable w.r.t. K iff $K \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB K and concepts C, D: $K \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. K.

Lemma

Given a DL KB K and concepts C, D: $K \models C \equiv D$ iff both $K \models C \sqsubseteq D$ and $K \models D \sqsubseteq C$.

Reduction lemmata:

Lemma

Given a DL KB K and a concept C: C is satisfiable w.r.t. K iff $K \not\models C \sqsubseteq \bot$.

Lemma

Given a DL KB K and concepts C, D: $K \models C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. K.

Lemma

Given a DL KB K and concepts C, D: $K \models C \equiv D$ iff both $K \models C \sqsubseteq D$ and $K \models D \sqsubseteq C$.

Lemma

Given a DL KB K and concepts C, D: C and D are disjoint w.r.t. K iff $C \sqcap D$ is unsatisfiable w.r.t. K.

Decision Problems for ABoxes

Definition (ABox consistency)

A DL KB $\mathcal{K}=(\mathcal{T},\mathcal{A})$ is consistent (also, \mathcal{A} is consistent w.r.t. \mathcal{T}) iff it has at least one model.

Definition (Instance checking)

An individual a is an instance of a concept C w.r.t. a DL KB K (denoted $K \models a : C$) iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ in all models \mathcal{I} if K.

Decision Problems for ABoxes (cont.)

Some more reduction lemmata:

Lemma

Given a DL KB $\mathcal{K}=(\mathcal{T},\mathcal{A})$, an individual a and a concept C:

 $\mathcal{K} \models a : C \text{ iff } \mathcal{K}' = (\mathcal{T}, \mathcal{A} \cup \{a : \neg C\}) \text{ is inconsistent.}$

Decision Problems for ABoxes (cont.)

Some more reduction lemmata:

Lemma

Given a DL KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, an individual a and a concept C: $\mathcal{K} \models a : C$ iff $\mathcal{K}' = (\mathcal{T}, \mathcal{A} \cup \{a : \neg C\})$ is inconsistent.

Lemma

Given a DL KB K = (T, A), and some concept C: C is satisfiable w.r.t. K iff $K' = (T, A \cup \{a: C\})$ is consistent, for some new individual a not appearing in K.

Example (cont.)

 \mathcal{T} :

```
Carnivore 

☐ Herbivore 

☐ Animal
    Carnivore \sqsubseteq \forall eats.(Animal \sqcup AnimalPart)
Herbivore \sqsubseteq \forall eats. \neg (Animal \sqcup \exists partOf.Animal)
                     Cow 

☐ Hebivore
               Brain \square \exists partOf.Aminal
         CowBrain \sqsubseteq Brain \sqcap \exists partOf.Cow
                      Grass 

□ Plant
                  DaisyFlower 

□ Plant
                 DaisyFlower \Box \neg Grass
```

 \mathcal{A} :

daisy : Cow g3457 : Grass daisy : ∀eats.DaisyFlower daisy, g3457 : eats