Action Learning: Recent Techniques and Properties

Michal Čertický

Department of Applied Informatics Comenius University, Bratislava

August 29, 2011

Michal Čertický [ReDIK 2011 Workshop](#page-12-0)

- Action model $=$ some kind of representation of all the actions executable in our domain.
- Describes: *Effects* and *Preconditions*.
- \bullet We use AM for *planning /* goal-based behaviour.
- **Action learning**
	- automatic creation and modification of action models
	- discovering the causal rules of a domain
	- inductive learning, where observations of a form (executed action, world state) serve as examples

- Complexity: Action models are usually hand-crafted by domain experts. If domains are complex enough, this task is overly tedious and time-consuming.
- Sustainability: When confronted with new information, we often need to revise our action models. We want to automate this process to save some time and avoid making mistakes.
- Universality: Automatic acquisition of action models is necessary for environmental universality (adaptation to different environments) of artificial agents.

Current Methods

- (Zettlemoyer-Pasula-Kaelbling, 2003) 3-layer Greedy search over the space of possible action models. Using many different operators, they modify a model and then evaluate it, based on how well it covers the training set.
- (Mourao-Petrick-Steedman, 2010) Learning reduced to a binary classification problem. One perceptron per fluent input vector represents the observation, output determines if the fluent value changes. Perceptron algorithm for training.
- (Balduccini, 2007) Observations, action models, and learning semantics are encoded as **ASP logic program**. Its answer sets represent new action models. Declarative solution.
- (Amir-Chang, 2008) and
- (Yang et al., 2007) Build the set of propositional constraints after observations. Use external SAT / MAX-SAT solvers to interpret this knowledge as action models.

∢ 何 ▶ 《 手 》 《 手 》

7 important properties (or challenges) of action learning methods, studied in related literature:

- **Partially observable** domains (incomplete knowledge).
- **Probabilistic action models.**

Deterministic effect: $\{\neg on(B, P_1), on(B, P_2)\}\$

Probabilistic effect: $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} $0.8: \neg on(B, P_1), on(B, P_2)$ 0.1 : $\neg on(B, P_1),$ $on(B, table)$ 0.1 : nochange

- **Action failures and sensoric noise.**
- **•** Learning both effects and preconditions. (Some methods need to have preconditions in advance and learn only effects.)

Properties (5-7)

• Conditional effects.

Consider an action $drink(P, B)$ with two effects:

- \bullet Person P ceases to be thirsty.
- 2 If beverage B was poisoned, person P will get sick.

:effect (not (thirsty P)) :effect (when (poisonous B) (sick P))

• Online algorithms.

Usually lower comp. complexity; Better suitable for autonomous agents.

• Probabilistic evaluation of **posible world states**.

∢⊡

Ε

∍

准

a \blacktriangleright \blacktriangleleft Þ. к Þ

Representation Structures $(1/3)$ - Transition Relation

Typical structure used for example in [Amir-Chang-2008].

Definition (Transition Relation)

Let S be a set of all the possible world states, and A a set of all the possible actions of our domain. Transition Relation TR is then:

 $TR \subseteq S \times A \times S$

Intuitive meaning of every $(s, a, s') \in \mathcal{TR}$ is that "execution of action a in a world state s causes a world state s' to hold in the next time step".

- Robust in terms of space requirements. Space complexity of TR is $O(|A|\cdot|\mathcal{S}|^2)$.
- Note: Cardinality of S can be expressed as $|S| = 2^{|{\mathcal{F}}|}$ where ${\mathcal F}$ is the set of all the fluent literals. $O(|{\mathcal A}| \cdot |{\mathcal S}|^2)$ is then equal to $O(|\mathcal{A}| \cdot (2^{|\mathcal{F}|})^2).$

Representation Structures (2/3) - Effect Relation

Our first improvement over TR in terms of space complexity.

Definition (Effect Relation)

Let S be a set of world states, $\cal F$ a set of fluent literals, and $\cal A$ the set of actions of our domain. Effect Relation \mathcal{ER} is then:

 $ER \subseteq S \times A \times F$

The meaning of triple $(s, a, f) \in \mathcal{ER}$ is that "execution of action **a** in a world state s causes a fluent f be true in the next time step".

- Space complexity of \mathcal{ER} is $O(2^{|\mathcal{F}|} \cdot |\mathcal{A}| \cdot |\mathcal{F}|)$ which is lower than in previous case.
- \bullet Anything that can be expressed in ${\cal TR}$ can also be expressed in \mathcal{ER} and vice versa. This means, that expressive power of those two structures is equal.
- In case of \mathcal{ER} , some information is expressed implicitly by the absence of elements in the relation (th[is](#page-7-0) s[av](#page-9-0)[e](#page-7-0)[s](#page-8-0) [s](#page-9-0)[pac](#page-0-0)[e\)](#page-12-0)[.](#page-0-0)

Representation Structures (3/3) - Effect Formula

Our new structure used by 3SG algorithm. Not a relation this time.

Definition (Effect Formula)

Effect Formula \mathcal{EF} is any finite set of **propositional atoms** over a vocabulary $\mathcal{L}_{\mathcal{EF}} = \{a^f \mid a \in \mathcal{A} \land f \in \mathcal{F}\} \cup \{a^f_c \mid a \in \mathcal{A} \land f, c \in \mathcal{F}\}.$

The meaning of atoms from \mathcal{EF} follows:

- a^f : "action a causes f"
- a_c^f : "c must hold in order for a to cause $f''(c$ is a condition of a^f)
	- Again, the space complexity of \mathcal{EF} is lower than in previous cases, only $O(|\mathcal{A}| \cdot (|\mathcal{F}| + |\mathcal{F}|^2))$, while the expressive power remains the same.
	- Space is saved by assigning implicit meaning to the combination of absence and presence of some of atoms in \mathcal{EF} . For example: $(s, a, f) \in \mathcal{ER}$ is expressed in \mathcal{EF} by the presence of a^t together with the absen[c](#page-10-0)e of all the a_c^f , such t[hat](#page-8-0) $c \in s$ $c \in s$ [.](#page-9-0)

3SG Algorithm

- 3SG algoritmhm (Simultaneous Specification, Simplification, and Generalization), is merely the first candidate method. More approaches will probably come in future.
- Comparison based on previously mentioned properties:

• Probabilistic action model here is a double $\langle \mathcal{EF}, \mathcal{P} \rangle$, where \mathcal{EF} is an Effect Formula expressing the **conditional effects** of actions, and P is a probabilistic function over the elements of E F

- 3SG runs once after every executed action.
- Its input is a triple (o, a, o') , where o and o' are incomplete observations from two most recent time steps, and a is the action executed between them.
- Algorithm always:
	- specifies our knowledge by adding some elements to \mathcal{EF} ,
	- modifies the value of prob. function P for each of previously added elements (if recent observations confirms or denies them),
	- and simplifies our model by removing very improbable elements from $\mathcal{E} \mathcal{F}$.
- Is **polynomial** in the size of observation.
- Is **online**. This means, that we always have (increasingly accurate) action model at our disposal.

何 ▶ (三) ()

- First, we need to formalize the **translation** from $\langle \mathcal{EF}, \mathcal{P} \rangle$ to some of the planning languages (such as PDDL, STRIPS, A or K , etc.).
- \bullet Then we will be able to decide all the properties of 3SG.
- **•** Finally, we need to **test** it in various kinds of **domains**, using benchmarks and/or games.