

Introduction

collision and self-collision detection of dynamically
deforming objects

generated hash table using hash function

works with tetrahedrals meshes

easily adapted to other primitives, such as triangles

Usage

Cloth modeling

Game engines

Surgical simulators

other physically based environments with up to 20k
tetrahedrons in real-time

Collision detection algorithm

all objects are classified to small 3D cells

all tetrahedrons are classified with respect to these
cells

discretize minimum and maximum of all AABBs

hash table of vertices and tetrahedrons

intersection tests for vertices and tetrahedrons

Spatial hashing of vertices

computed in first pass

coordinates of vertex (x,y,z) are divided by the given
grid cell size l and divided down to next integer

(i=[x/l], j=[y/l], k=[z/l])

hash function maps discretized positions (i,j,k) to 1D
index h

Vertex and object information is stored in hash table
with indexes h=hash(i,j,k)

Hash function

gets three values describing vertex position

return hash value

hash(x,y,z) = (x p1 xor y p2 xor z p3) mod n

p1,p2,p3 are large prime numbers
n is the hash table size

the quality of the hash function is less important for
larger hash tables

Spatial hashing of tetrahedrons

discretize minimum and maximum values describing the AABB of
tetrahedron

values are divided by cell size and rounded down to integer

hash values are computed for all cells affected by the AABB of a
tetrahedron

all vertices found at the according hash table index are tested
for intersection

Intersection tests

using barycentric coordinates

if Vertex penetrates Tetrahedron

detect Collision
if Vertex penetrates Tetrahedron and both belong to same
object

detect Self-Collision
if Vertex is part of Tetrahedron

test is omitted

Actual Intersection tests

if Vertex p and Tetrahedron t are mapped to the same hash
index and p is not part of t

perform Penetration test

check p against AABB of t whether p is inside t with vertices
at positions (x0,x1,x2,x3)

Barycentric-coordinate test is slightly faster than the half-
space test

Barycentric coordinates test

express p with new coordinates β = (β1, β2, β3)T

with respect to x0 axis coincide with the edges of t adjacent to x0
p = x0 + Aβ

A = [x1-x0, x2-x0, x3-x0]

β = A−1(p − x0)

if β1≥ 0, β2≥ 0, β3≥ 0 and β1+ β2+ β3≤ 1

p lies inside tetrahedron t

Grid cell size

larger cells increase number of primitives in hash index,
slows down intersection test

cell size should have size of the average length off all
tetrahedrons

grid cell size has a bigger effect on the performance than
hash function or hash table size

Hash table size

larger table size
reduce the risk of mapping different 3D positions to the same
hash index

algorithm works faster

the performance slightly decreases

larger hash table size than number of object primitives
minimalize the hash collisions risk

not require re-initialization in each step, using time
stamps in hash table cells

Example 1

two deformable objects with an
overall number of 5898 vertices
and 20514 tetrahedrons

Example 2

100 deformable objects with an
overall number of 1200 vertices
and 1000 tetrahedrons

Time complexity

Time complexity: O(n2), goal: O(n)
n is number of primitives

first pass - insert vertices into hash table: O(n)

second pass - O(n.p.q)
p is the average number of cells intersected by a tetrahedron

q is the average number of vertices per cell

choose cell size to by proportional to average tetrahedron size = p
is constant

no hash collisions = q is constant too

Results of the algorithm

Performance of the collision
detection algorithm

The performance is independent
from the number of objects. It
only depends on the number of
object primitives.

Average collision detection
time, minimum, maximum, and
standard deviation for 1000
simulation step

Defect of the algorithm

presented algorithm does not detect, whether an edge
intersects with tetrahedron due to two reasons

first: the relevance of an edge test is unclear in case of densely
sampled objects

second: it is rather uncommon and costly to implement collision
response in case of penetrating edges

©Stanislav Miklóšik, 2011

	Snímok 1
	Snímok 2
	Snímok 3
	Snímok 4
	Snímok 5
	Snímok 6
	Snímok 7
	Snímok 8
	Snímok 9
	Snímok 10
	Snímok 11
	Snímok 12
	Snímok 13
	Snímok 14
	Snímok 15
	Snímok 16
	Snímok 17
	Snímok 18

