Lecture 1: First-Order Logic 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

23 Sep 2014

Martin Baláž, Martin Homola | [Lecture 1: First-Order Logic](#page-20-0)

a miller

4 伊 ▶

つくい

FOL: Syntax

Definition (Alphabet)

An alphabet contains

• Set of variables

$$
V=\{x,y,z,\dots\}
$$

- Set of function symbols $F = \{f, g, h, ...\}$
- Set of predicate symbols $P = \{p, q, r, \dots\}$
- **o** Logical connectives

 $\neg, \lor, \land, \rightarrow, \leftrightarrow$

- Quantifiers
	- ∀ ∃
- Auxiliary symbols $($) ,

 \blacksquare

 $2Q$

∋ »

Definition (Arity)

Given an alphabet with function symbols F and predicate symbols P, arity is any function *arity* : $F \cup P \mapsto \mathbb{N}_0$.

Note:

- Arity specifies how many "arguments" each function and predicate requires.
- Functions (predicates) of arity 0, 1, 2, 3, and so on are called: nullary, unary, binary, ternary, etc.

FOL: Syntax (cont.)

Definition (Term)

Given an alphabet and an arity function, a term is any of the following:

- a variable;
- an expression $f(t_1, \ldots, t_n)$ if f is a function symbol with arity *n* and t_1, \ldots, t_n are terms.

Definition (Atom)

Given an alphabet and an arity function, an atomic formula (atom) is an expression $p(t_1, \ldots, t_n)$ where p is a predicate symbol with arity *n* and t_1, \ldots, t_n are terms.

FOL: Syntax (cont.)

Definition (Term)

Given an alphabet and an arity function, a term is any of the following:

- a variable;
- an expression $f(t_1, \ldots, t_n)$ if f is a function symbol with arity n and t_1, \ldots, t_n are terms.

Definition (Atom)

Given an alphabet and an arity function, an atomic formula (atom) is an expression $p(t_1, \ldots, t_n)$ where p is a predicate symbol with arity n and t_1, \ldots, t_n are terms.

Note: Given nullary f , p , the term f () is called a constant and the atom $p()$ is called a propositional variable. Note: In such a case we often omit the brackets and write just f , p instead of $f()$, $p()$.

つくい

Definition (Formula)

Given an alphabet and an arity function, a formula is any expression of the following forms:

where Φ , Ψ are formulae, and x is a variable.

Note: Any occurrence of a variable x in quantified formulae $(\forall x)\Phi$, $(\exists x)\Phi$ is an occurrence within the scope of the respective quantifier.

 \rightarrow \rightarrow \equiv \rightarrow \rightarrow

つくい

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set $\mathcal L$ of all formulae.

 200

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set $\mathcal L$ of all formulae.

Note: from now on we will always assume some fixed FOL language $\mathcal L$ over some alphabet with the respective arity function.

Definition (Free vs. bounded variable occurrence)

An occurrence of some variable x in a formula Φ is free if it is not within the scope of any quantifier. The occurrence is bounded otherwise.

Definition (Ground term)

A term t is ground if it does not contain any variable.

Definition (Ground formula)

A formula Φ is ground if it does not contain any free occurrence of any variable.

Note: Ground formulae are also called closed formulae or sentences. Note: from now on we will assume that all formulae are ground.

Definition (Theory)

A first order theory (or just theory) T is a finite set of (ground) formulae.

Note: we will look at theories as knowledge bases: a theory T is a set of formulae that describes some situation or some problem.

Let us assume the following situation: Jack killed John. If someone killed somebody else, he is a murderer. Murderers go to jail. We may encode this in FOL theory T :

> Killed(Jack, John) $(\forall x)((\exists y)$ Killed $(x, y) \rightarrow$ Murderer $(x))$ $(\forall x)(Murderer(x) \rightarrow Jail(x))$

つくい

Definition (First order structure)

A structure is a pair $\mathcal{D} = (D, I)$ where

- \bullet D, called domain, is a nonempty set;
- I, called interpretation, is a function s.t.:

•
$$
I(f)
$$
 is a function $f' : D^{arity}(f) \to D$;

 $I(t)$ is $t^I = f^I(t_1^I, \ldots, t_n^I)$ for any ground term of the form $t = f(t_1, \ldots, t_n).$

•
$$
I(p)
$$
 is a relation $p' \subseteq D^{arity(p)}$.

Note: $D^0 = \{ \langle \rangle \}$, hence there are two possible interpretations of each propositional variable $p\colon$ either $p^I=\{\langle\rangle\}$ (i.e., p is $true)$ or $p^l = \emptyset$ (i.e., p is false).

Note: similarly for a constant $c: c^I: D^0 \to D$, i.e., each constant term is interpreted by a constant function which returns one of the elements of D.

Definition (Structure extension)

An extension of a structure $\mathcal{D} = (D, I)$ w.r.t. a variable x is a structure $\mathcal{D}' = (D, I')$ where I' is identical to I except for in addition $I'(x) = x^{i'} = d$ for some element $d \in D$.

 200

Definition (Satisfaction \models)

A formula Π is satisfied w.r.t. a structure $\mathcal{D} = (D, I)$ (denoted by $\mathcal{D} \models \Pi$) based type of Π : $p(t_1,\ldots,t_n)$: $\mathcal{D} \models p(t_1,\ldots,t_n)$ iff $(t'_1,\ldots,t'_n) \in p^t$; $\neg \Phi$: $\mathcal{D} \models \neg \Phi$ iff $\mathcal{D} \not\models \Phi$; $\Phi \wedge \Psi$: $\mathcal{D} \models (\Phi \wedge \Psi)$ iff $\mathcal{D} \models \Phi$ and $\mathcal{D} \models \Psi$; if $\Phi \vee \Psi$: $\mathcal{D} \models (\Phi \vee \Psi)$ iff $\mathcal{D} \models \Phi$ or $\mathcal{D} \models \Psi$; $\Phi \to \Psi$: $\mathcal{D} \models (\Phi \to \Psi)$ iff $\mathcal{D} \not\models \Phi$ or $\mathcal{D} \models \Psi$; $\Phi \leftrightarrow \Psi: \mathcal{D} \models (\Phi \leftrightarrow \Psi)$ iff $\mathcal{D} \models (\Phi \rightarrow \Psi)$ and $\mathcal{D} \models (\Psi \rightarrow \Phi)$; $(\exists x)\Phi$: $\mathcal{D} \models (\exists x)\Phi$ iff $\mathcal{D}' \models \Phi$ for some ext. \mathcal{D}' of $\mathcal D$ w.r.t. x; $(\forall x)\Phi$: $\mathcal{D} \models (\forall x)\Phi$ iff $\mathcal{D}' \models \Phi$ for all ext. \mathcal{D}' of $\mathcal D$ w.r.t. x; where Φ , Ψ are any formulae and $p(t_1, \ldots, t_n)$ is any ground atom.

イロメ イ母メ イヨメ イヨメ

E

Definition (Model)

A structure D is a model of Φ if $\mathcal{D} \models \Phi$; D is a model of a theory T (denoted $\mathcal{D} \models \mathcal{T}$) if $\mathcal{D} \models \Phi$ for all $\Phi \in \mathcal{T}$.

Definition (Satisfiability)

A formula (or theory) is satisfiable, if it has a model.

and and

イヨメ イヨメ

 200

Definition (Entailment)

A theory T entails a formula Φ (denoted $T \models \Phi$) if for each model $\mathcal D$ of $\mathcal T$ we have $\mathcal D \models \Phi$.

Martin Baláž, Martin Homola | [Lecture 1: First-Order Logic](#page-0-0)

4 m k

 Ω

Is there a model of our theory T ? T was:

```
Killed(Jack, John)
(\forall x)((\exists y)Killed(x, y) \rightarrow Murderer(x))(\forall x)(Murderer(x) \rightarrow Jail(x))
```
 \blacksquare

 299

э

Is there a model of our theory T ? T was:

$$
\mathsf{Killed}(\mathsf{Jack}, \mathsf{John})
$$

$$
(\forall \mathsf{x})((\exists \mathsf{y})\mathsf{Killed}(\mathsf{x}, \mathsf{y}) \to \mathsf{Murderer}(\mathsf{x}))
$$

$$
(\forall \mathsf{x})(\mathsf{Murderer}(\mathsf{x}) \to \mathsf{Jail}(\mathsf{x}))
$$

Let us construct $\mathcal{D} = (\{s\}, I)$ with:

$$
Jackl = s
$$

\n
$$
Johnl = s
$$

\n
$$
Killedl = \{\langle s, s \rangle\}
$$

\n
$$
Murdererl = \{\langle s \rangle\}
$$

\n
$$
Jaill = \{\langle s \rangle\}
$$

and in

医阿雷氏阿雷氏

 299

э

Is there a model of our theory T ? T was:

$$
\mathsf{Killed}(\mathsf{Jack}, \mathsf{John}) \\ (\forall x)((\exists y)\mathsf{Killed}(x, y) \to \mathsf{Murderer}(x)) \\ (\forall x)(\mathsf{Murderer}(x) \to \mathsf{Jail}(x))
$$

Let us construct $\mathcal{D} = (\{s\}, I)$ with:

$$
Jackl = s
$$

\n
$$
Johnl = s
$$

\n
$$
Killedl = \{\langle s, s \rangle\}
$$

\n
$$
Murdererl = \{\langle s \rangle\}
$$

\n
$$
Jaill = \{\langle s \rangle\}
$$

Is D a model of T ?

 \overline{a}

 2990

э

イヨメ イヨメ

Is there a model of our theory T ? T was:

$$
\begin{array}{c} \text{Killed(Jack, John)}\\ (\forall x)((\exists y)\text{Killed}(x,y)\rightarrow\text{Murderer(x)})\\ (\forall x)(\text{Murderer}(x)\rightarrow\text{Jail}(x))\end{array}
$$

Let us construct $\mathcal{D} = (\{s\}, I)$ with:

$$
Jackl = s
$$

\n
$$
Johnl = s
$$

\n
$$
Killedl = \{\langle s, s \rangle\}
$$

\n
$$
Murdererl = \{\langle s \rangle\}
$$

\n
$$
Jaill = \{\langle s \rangle\}
$$

Is it our indented model of T?

and in

э

 Ω

Is there a model of our theory T ? T was:

$$
\begin{array}{c}\n\text{Killed(Jack, John)}\\ \n(\forall x)((\exists y)\text{Killed}(x, y) \rightarrow \text{Murderer}(x))\\ \n(\forall x)(\text{Murderer}(x) \rightarrow \text{Jail}(x))\n\end{array}
$$

Let us construct $\mathcal{D} = (\{s\}, I)$ with:

$$
Jack' = s
$$

\n
$$
John' = s
$$

\n
$$
Killed' = {\langle s, s \rangle}
$$

\n
$$
Murdeer' = {\langle s \rangle}
$$

\n
$$
Jail' = {\langle s \rangle}
$$

Does it hold $T \models$ Jail(Jack)?

∢ ロ ▶ - ◀ @ ▶

化重新 化重新

 299

э