Lecture 3: Applications of FOL 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

7 Oct 2014

Prove that there is no male barber when

- every barber shaves beards of those men who do not shave their own beards
- no barber shaves beards of those men who shave their own beards

- predicate p(x): x is a barber
- predicate q(x, y): x shaves y's beard

Theory T:

$$(\forall x)(p(x) \rightarrow (\forall y)(\neg q(y, y) \rightarrow q(x, y)))$$

 $(\forall x)(p(x) \rightarrow (\forall y)(q(y, y) \rightarrow \neg q(x, y)))$

Formula ϕ :

 $\neg(\exists x)p(x)$

Martin Baláž, Martin Homola Lecture 3: Applications of FOL

æ

→

Theory T:

$$egin{aligned} &\neg p(x) \lor q(y,y) \lor q(x,y) \\ &\neg p(x) \lor \neg q(y,y) \lor \neg q(x,y) \end{aligned}$$

Formula $\neg \phi$:

p(c)

Martin Baláž, Martin Homola Lecture 3: Applications of FOL

æ

→ 《문》 《문》

(assumption)

æ

Martin Baláž, Martin Homola Lecture 3: Applications of FOL

p(c) $<math> \neg p(x) \lor q(y,y) \lor q(x,y)$

(assumption) (assumption)

Barber - Reasoning

p(c)

- $\ 2 \ \neg p(x) \lor q(y,y) \lor q(x,y)$

(assumption) (assumption) (assumption)

Barber - Reasoning

Image: p(c)(assumption)Image: p(x) $\lor q(y, y) \lor q(x, y)$ (assumption)Image: p(x) $\lor \neg q(y, y) \lor \neg q(x, y)$ (assumption)Image: p(x) $\lor \neg q(y, y) \lor \neg q(x, y)$ (assumption)Image: q(y, y) $\lor q(c, y)$ (resolution of 1 and 2 with $\{x/c\}$)Image: p(x) $\lor \neg q(x, y)$ (resolution of 1 and 3 with $\{x/c\}$)

1	<i>p</i> (<i>c</i>)		(assumption)
2	$ eg p(x) \lor q(y,y) \lor q(x,y)$		(assumption)
3	$\neg p(x) \lor \neg q(y,y) \lor \neg q(x,y)$	·)	(assumption)
4	$q(y,y) \lor q(c,y)$	(resolution of 1 and	d 2 with $\{x/c\}$)
5	$ eg q(y,y) \lor \neg q(c,y)$	(resolution of 1 and	d 3 with $\{x/c\}$)
6	q(c,c)		(factor of 4)

1	<i>p</i> (<i>c</i>)			(assumption)
2	$ eg p(x) \lor q(y,y) \lor q(x,y)$			(assumption)
3	$\neg p(x) \lor \neg q(y,y) \lor \neg q(x,y)$	/)		(assumption)
4	$q(y,y) \lor q(c,y)$	(resolution of	f 1 and 2	2 with $\{x/c\}$)
5	$ eg q(y,y) \lor eg q(c,y)$	(resolution of	f1 and 🤇	B with $\{x/c\}$)
6	q(c,c)			(factor of 4)
7	eg q(c,c)			(factor of 5)

1	<i>p</i> (<i>c</i>)		(assumption)
2	$ eg p(x) \lor q(y,y) \lor q(x,y)$		(assumption)
3	$\neg p(x) \lor \neg q(y,y) \lor \neg q(x,y)$	/)	(assumption)
4	$q(y,y) \lor q(c,y)$	(resolution of 1 and	2 with $\{x/c\}$)
5	$ eg q(y,y) \lor eg q(c,y)$	(resolution of 1 and	3 with $\{x/c\}$)
6	q(c,c)		(factor of 4)
7	eg q(c,c)		(factor of 5)
8	\perp	(resolution of 6	and 7 with {})

Boolean Circuits - Assignment

If the value of A is 0, the value of B is 1, and the value of C is 1, what is the value of G?

Boolean Circuits - Alphabet

- constants a, b, c, d, e, f denote wires
- constants 0 and 1 refer to the boolean values that wire may possess
- predicate val(w, v): the value of a wire w in the circuit is v
- predicate and(x, y, z): there is an and-gate in the circuit that connects inputs x and y to an output z
- predicate or(x, y, z): there is an or-gate in the circuit that connects inputs x and y to an output z
- predicate inv(x, y): there is an inverter in the circuit that connects an input x to an output y

Boolean Circuits - Formalization

Theory T:

- Input: inv(b,d) inv(c,e) and(d,e,f) and(a,f,g)
- AND gate

 $(\forall x)(\forall y)(\forall z)(and(x, y, z) \land (val(x, 1) \land val(y, 1)) \rightarrow val(z, 1))$ $(\forall x)(\forall y)(\forall z)(and(x, y, z) \land (val(x, 0) \lor val(y, 0)) \rightarrow val(z, 0))$

OR gate

 $(\forall x)(\forall y)(\forall z)(or(x, y, z) \land (val(x, 1) \lor val(y, 1)) \rightarrow val(z, 1))$ $(\forall x)(\forall y)(\forall z)(or(x, y, z) \land (val(x, 0) \land val(y, 0)) \rightarrow val(z, 0))$

NOT gate

$$(\forall x)(\forall y)(inv(x, y) \land val(x, 0) \rightarrow val(y, 1))$$

 $(\forall x)(\forall y)(inv(x, y) \land val(x, 1) \rightarrow val(y, 0))$

ъ

Query ϕ : $val(a,0) \land val(b,1) \land val(c,1) \rightarrow val(g,0)$

Boolean Circuits - Normal Form

Theory T:

$$inv(b,d) \quad inv(c,e) \quad and(d,e,f) \quad and(a,f,g)$$

$$\neg and(x,y,z) \lor \neg val(x,1) \lor \neg val(y,1) \lor val(z,1)$$

$$\neg and(x,y,z) \lor \neg val(x,0) \lor val(z,0)$$

$$\neg and(x,y,z) \lor \neg val(y,0) \lor val(z,0)$$

$$\neg or(x,y,z) \lor \neg val(x,1) \lor val(z,1)$$

$$\neg or(x,y,z) \lor \neg val(y,1) \lor val(z,1)$$

$$\neg or(x,y,z) \lor \neg val(x,0) \lor \neg val(y,0) \lor val(z,0)$$

$$\neg inv(x,y) \lor \neg val(x,0) \lor val(y,1)$$

$$\neg inv(x,y) \lor \neg val(x,1) \lor val(y,0)$$

Formula $\neg \phi$:

$$val(a,0)$$
 $val(b,1)$ $val(c,1)$ $\neg val(g,0)$

▶ ★ 문 ▶ ★ 문 ▶ ...

A.

(assumption)

э

Martin Baláž, Martin Homola Lecture 3: Applications of FOL

and (a, f, g)(assumption) $\neg and(x, y, z) \lor \neg val(x, 0) \lor val(z, 0)$ (assumption)val(a, 0)(assumption) $\neg val(g, 0)$ (assumption) $\neg val(a, 0) \lor val(g, 0)$ (resolution of 1 and 2 with $\{x/a, y/f, z/g\}$)

and(a, f, g) (assumption)
 ¬and(x, y, z) ∨ ¬val(x, 0) ∨ val(z, 0) (assumption)
 val(a, 0) (assumption)
 ¬val(g, 0) (assumption)
 ¬val(a, 0) ∨ val(g, 0) (resolution of 1 and 2 with {x/a, y/f, z/g})
 ¬val(a, 0) (resolution of 4 and 5 with {})

and(a, f, g) (assumption) 2 \neg and $(x, y, z) \lor \neg$ val $(x, 0) \lor$ val(z, 0)(assumption) val(a,0) (assumption) $\bigcirc \neg val(g,0)$ (assumption) $\bigcirc \neg val(a,0) \lor val(g,0)$ (resolution of 1 and 2 with $\{x/a, y/f, z/g\}$ $\bigcirc \neg val(a,0)$ (resolution of 4 and 5 with $\{\}$) (resolution of 3 and 6 with $\{\}$) Avialable implemented provers:

- Prover9: http://www.cs.unm.edu/~mccune/prover9/
- Vampire: http://vprover.org/