
 Collision Detection

Juraj O
nderik | onderik@sccg.sk

Lesson 05

 Mid Phase

Lecture 05 Outline

 Problem definition and motivations
 Generic Bounding Volume Hierarchy (BVH)

 BVH construction, fitting, overlapping
 Metrics and Tandem traversal

 Several bounding volume strategies
 OBBs, kDOPs, SSVs

 Proximity evaluation of primitive geometries
 Sphere x Capsule collisions

 Approximate convex decomposition

Mid-Phase Collision Detection

 Input: List of pairs of potentially colliding objects.
 Problem: Refine this list based on more accurate

geometrical properties of objects – prune out
pairs of objects surely no colliding.

 Output: Refined (smaller) list of pairs of
potentially colliding objects.

 Solutions:
 Simplify complex geometry with simpler convex bounding

volumes arranged into inclusive hierarchy
 Decompose complex geometry into convex sub-parts.

Calculate narrow phase using this sub-parts only.

Bounding Volume Hierarchy

Bounding Volume Hierarchy
 Definition: A Bounding Volume Hierarchy (BHV) also

known as Bounding Volume Tree (BVT) is generally
an m-ary tree T = {T

1
, · · · , T

m
, BV, G}, whose nodes

(T
i
) contain a specific bounding volume (BV) which

must cover some part of object’s geometry (G).

Geometry

BVT - stages

Binary Sphere BVH - construction stages

BVH - Properties

 Each lower level of the hierarchy should
represent better approximation of the geometry.

 Child nodes should cover together the same part
of geometry as their parent node.

 The BVH construction should be automatic, with
only a few user defined parameters.

 To speed up the update process BVs should be
invariant to rigid motion

 BVs should tightly fit object’s geometry and
minimize their volume, surface or other measure.

BVH – Choice of Bounding Volume

Sphere AABB OBB
Convex
hullkDop

 Bounding Volume should
 Be simple (usually) convex well defined geometry
 Fit the non-spherical geometry as good as possible
 Have fast and efficient overlap test
 Rotate and translate with the geometry
 …

BVH - Hierarchy Construction

 Problem
 Given a complex (rigid) geometry define a strategy how to

create appropriate fitting BVT
 Properties

 Hierarchy is usually created before simulation
 Construction should be as automatic as possible
 Transformation update must be fast

 Strategies
 Top-down BVT construction strategies
 Bottom-up BVT construction strategies

BVH - Hierarchy Construction

Top-Down

Bottom-Up

 Top-Down vs. Bottom-up construction strategies

BVH - Construction: Bottom-Up

 Define the clustering factor “m” (+ other params)
 Cover smallest geometry sub-parts with Bvs
 Find “m” closest BVs

 Compute distance of BV centroids for clustering
 Compute BV surface distances for clustering

 Merge them into parent BV
 Fit vertices of child BVs or original geometry

 Repeat this process until one root is found
 Pros/Cons:

 Spatial locality provides usually optimally balanced BVT
 Clustering can be very time consuming

BVH - Construction: Bottom-Up

BVH - Construction: Top-Down

 Define the branching factor “m” (+ other params)
 Cover the whole geometry with root BV
 Split the geometry into “m” child parts

 Split along largest vertex variance
 Sub-parts should have similar volume

 Proceed recursively until stop criterion (volume of
part is small ...

 Pros/cons
 Very simple idea (implementation of the overall algorithm)
 Sensitive to branching factor and stop condition

BVH - Construction: Top-Down

BVH - Tandem Traversal

 Given nodes T
A
 and T

B
 from geometries A and B

 Test T
a
 and T

B
 for overlap – report false if no overlap

 T
a
 and T

B
 overlap we have to solve 3 cases

 T
A
 and T

B
 are leaf nodes - Report A and B overlap

 Only T
A
 or T

B
 is a leaf node

 Take all child nodes of the non-leaf node and do recursively
tandem traversal between leaf node and child nodes.

 Both T
A
 and T

B
 are not leaf nodes

 Choose which node (T
A
 or T

B
) has larger geometry

 Do tandem traversal of all child nodes of the larger node
with the smaller node.

Tandem Traversal

BVH - Cost Function

 Cost Function: T
AB

 = N
b
×T

b
 + N

u
×T

u
 + N

p
×T

p

 T
AB

: is total time spent for interference detection between
two objects A and B.

 N
b
 × T

b
: is the time spent on the overlap tests between all N

b

BV pairs.
 N

u
 × T

u
: is the time spent on the update of all N

u
 BVs.

 N
p
 × T

p
: is the time spent on the exact collision tests between

all N
p
 primitive pairs.

 N
b
, N

u
 and N

p
: Number of operations

 T
b
, T

u
 and T

p
: Time spent on one operation

Bounding Volumes

k-Discrete Orientation Polytopes (kDOP)

 Definition: k-Discrete Orientation Polytope (kDOP)
is a convex polyhedron formed by the intersection
of negative half-spaces of planes whose normals
come from a small set of k fixed orientations di
and have distances λi to the center c of kDOP.

 kDOP={ p in R3 | di
T(p - c) ≤ λi and 1 ≤ i ≤ k }

 Axis Aligned Bounding Box (AABB) is 6DOP with 6
directions
 (+1,0,0); (-1,0,0); (0,+1,0); (0,-1,0); (0,0,+1); (0,0,-1);

kDOP – Overlap Test and Fitting

c

8 fixed orientations and 4
intervals (slabs)

Refitting Convex Hull

Refitting kDOP

Transformation

d1

d2

d4
d3

d6

d5

d7
d8

8 DOP (2D)

kDOP - Hierarchy Construction

 Create binary BVT using Top-Down approach
 Split G into G1 and G2 by a cutting plane with

normal being one of k directions
 Assuming geometry is a mesh – choose planes

origin as one of triangles centroid
 Splitting strategies (choice of origin and normal)

 Min Sum: Minimize the sum of volumes of G1 and G2
 Min Max: Minimize the larger volume of G1 and G2
 Splatter or Longes Side: We choose the direction that yields

the largest variance and the reference point being the
mean (or median) centroid along such direction.

kDOP – Overlap Test and Update

 Overlap Test
 Since kDOPs are convex polytopes we can use SAT for

overlap test
 Since normals of all faces comes from k orientations we can

use conservative SAT → just test all 1D interval overlaps
 Hierarchy Update

 kDOPs are not transformation invariant → we must refit
geometry when the transformation changes

 Full fitting is expensive → We must use approximate refitting
 Hill Climbing: Precompute convex hulls, during simulation use

local search to find new interval limits
 Approximate Refitting: Similar to hill Climbing just precompute

kDOP vertices instead of convex hull

Oriented Bounding Boxes (OBB)

 Definition: Oriented Bounding Box (OBB) is a set of
points p R∈ 3 inside a box defined with a center
point c and 3 mutually orthogonal unit direction
vectors d

1
, d

2
, d

3
 and their extents λ

1
, λ

2
, λ

3

 OBB = { c + s
1
d

1
 + s

2
d

2
 + s

3
d

3
 | |si| ≤ |λi| }

 Similar to AABB but can be freely rotated with the
geometry

 Suitable for fast overlap test using SAT

OBB - Overlap test

Minimal variance

Maximal variance

Edge sub-sampling

d1A
d2A

d3A

cA

rAB

cB
d1B

d3B

sAB = |v • rAB|

hA = |v • d1
A|+|v • d2

A|+|v • d3
A|

hB = |v • d1
B|+|v • d2

B|+|v • d3
B|

hA

hBsAB

hB

hA d2B

Face sub-sampling

v

OBB - Hierarchy Construction

Splitting
Geometry

 Again Top-Down splitting
 Fit geometry with optimal OBB
 Split in halves along longest axis
 Use similar rules as for kDOPs

 Fitting OBB
 Optimal fit O(n3) – slow
 Approximate “Core set” algorithm:

reduce vertices, use optimal algo.
 Approximate “Principal direction”:

Use PCA to find principal directions
and variance along them.

 Update OBB: just rotate
directions and move center

Separating Axis Theorem for Polytopes

 Polytope SAT: Any two convex polytopes are
disjoint iff there exists a separating axis which is
either perpendicular to some face of the
polytopes or to any two edges each taken from
one polytope

Vertex – Vertex Case

swing
swing

Vertex – Edge Case

swing

Edge – Edge Case

No swing

OBB – Overlap Test

 General SAT for polytopes needs C axis checks
 C = |F

A
|+|F

B
|+|E

A
|.|E

B
|

 |F
A
| and |F

B
|= number of faces of A and B

 |E
A
| and |E

B
|= number of edges of A and B

 For OBB all faces and edges have only 3 principal
directions: C = 3+3 + 3 x 3 = 15 checks
 sAB = |v • rAB| (projected distance of centers onto v)
 hA = |v • d1

A|+|v • d2
A|+|v • d3

A| (projection of A onto v)

 hB = |v • d1
B|+|v • d2

B|+|v • d3
B| (projection of B onto v)

 15 Directions v are: d1
A x d1

B, d1
A x d2

B, …
 If all of them are separating OBBs do not overlap

Swept Sphere Volumes (SSV)

 Definition: The Swept Sphere Volume SSVV is a
region of points p R3 whose distance to some ∈
primitive volume V is at most the radius r.
Alternatively (SSV) is defined as the Minkowski sum
of a primitive volume V and a sphere S = { p | |p –
0| k ≤ r } with a radius r located at the origin.

 SSVV = { p | |p - q| ≤ r q V } = V S∧ ∈ ⊕
 Point Swept Sphere (PSS): V is a point
 Line swept Sphere (LSS): V is a line segment
 Rectangle swept Sphere (RSS): V is a rectangle
 …

SSV - Overlap Test and Update

PSS

LSSRSS

Minimal
variance

Maximal variance

Distance

Surface point

Extremal
spheres

left, right
centerscL

cR

 Overlap test: True if distance between primitive
volumes is less than the sum of radius

 Update: Transform primitive geometries

 Proximity

of Primitive
Geometries

Sphere x Sphere

 Contact point/normal:
 Take the direction from one center to other
 Calculate points on both spheres along direction vector.
 Take their average as contact point
 Contact normal is just normalized distance vector

 Penetration depth:
 Take the distance between centers

minus radius of both spheres
Radius

Center

Contact
normal

Penetration
depth

Capsule x Sphere

 Contact point/normal:
 Project center “C” of sphere onto capsule direction axis “a”

a = C
2
- C

1
; u = norm(a); v = C - C

1
; q = u dot v

 Solve Case 1 (q<0) and Case 3 (q>|a|) as Sphere x Sphere
contact

 Case 2 is sphere to infinite cylinder contact:
Q = c

1
+ qu; m = C - Q; n = norm(m); P1 = Q + r

1
n; P2 = C - r

2
n

 Contact point/normal: p = 0.5(P
1
 + P

2
); n = norm(P

2
 - P

1
)

 Penetration depth:
 Take d = -|P

2
 - P

1
|

Capsule x Sphere

Center 1 Center 2

Case 1:
Sphere x Sphere

Axis
projection

Penetration
depth

Case 2:
Sphere x cylinder

Case 3:
Sphere x sphere
(= Case 1)

Radius 1

Radius 2

Capsule x Capsule

 Principle: use external Voronoi Regions to classify
centers of capsules

 Project centers of capsule A onto axis of B
 Project centers of capsule B onto axis of A
 Classify centers on axes as

CenterB1 CenterB2

RegionA1 A1B1 A1B2
RegionA AB1 AB2
RegionA2 A2B1 A2B2

CenterA1 CenterA2

RegionB1 B1A1 B1A2
RegionB BA1 BA2
RegionB2 B2A1 B2A2

Capsule x Capsule

 Sphere x Sphere cases:
 (A1B1 ; B1A1) , (A1B2 ; B2A1) , (A2B1 ; B1A2) , (A2B2 ; B2A2)

 Project projected centers PA1, PA2, (PB1, PB2) back
onto its original axes A (B) = PPA1, PPA2, (PPB1, PPB2)

 Sphere x Cylinder cases:
 e.g. PA1 is projected A1 onto B
 Now project PA1 back onto A (=PPA1) and see where it lies
 If PPA1 is in RegionA1 or RegionA2 we have sphere x cylinder
 PPA2 in RegionA1/A2; PPB2 in RegionB1/B2; PPB2 in RegionB1/B2

 Cylinder x Cylinder cases:
 Otherwise (e.g. PPA1 lies in RegionA)
 or PPA2 is in RegionA or PPB1 is in RegionB or PPB2 is in RegionB

Capsule x Capsule

C
A1

C
A2

C
B1

C
B2

C
B1

Region
B1

Region
B

Region
B2

Region
A2

Region
A

Region
A2

Region
A1

 A2 in RegionB1
 B1 in RegionA2
 Sphere x

Sphere

Capsule x Capsule

C
A1

C
A2

C
B1

C
B2

Region
B1

Region
B

Region
B2

Region
A2

Region
A

Region
A1

P
A2

PP
A2

 PP
A2

 is in Region
A2

 Sphere x Cylinder

 Approximate Convex
 Decomposition

Approximate Convex Decomposition

 Problem: For a given non-convex geometry find a
small set of sub-parts which are almost convex

 A geometry is almost convex if the difference
between its volume and the volume of its convex
hull is under given threshold

 It is usually done only once before simulation
 A number of complex algorithms exists

 Measuring concavity, fuzzy clustering, …
 We provide here simple relaxation strategy

ACD - Relaxation strategy

 Choose a Top-Down splitting strategy (e.g. OBB)
 Split recursively geometry until small leaf nodes
 Use volume threshold and stop criterion
 We have now a (large) set of small (almost)

convex sub-parts.
 Put them into priority queue based on their volume

(sort upon volume)
 Pop first part and try to merge it with some other

small part. Merge only when the ratio between
merged volume and appropriate convex hull is
under given threshold

Approximate Convex Decomposition

Convex Hull

Patch

Splitting
Vertices

Exterior
Volumes

Closed
Patches

 Choose patch, create convex hull, mark splitting
vertices → Create sub-parts. Exterior volume → 0

 The End
 let me go !

	Snímok 1
	Snímok 2
	Snímok 3
	Snímok 4
	Snímok 5
	Snímok 6
	Snímok 7
	Snímok 8
	Snímok 9
	Snímok 10
	Snímok 11
	Snímok 12
	Snímok 13
	Snímok 14
	Snímok 15
	Snímok 16
	Snímok 17
	Snímok 18
	Snímok 19
	Snímok 20
	Snímok 21
	Snímok 22
	Snímok 23
	Snímok 24
	Snímok 25
	Snímok 26
	Snímok 27
	Snímok 28
	Snímok 29
	Snímok 30
	Snímok 31
	Snímok 32
	Snímok 33
	Snímok 34
	Snímok 35
	Snímok 36
	Snímok 37
	Snímok 38
	Snímok 39
	Snímok 40
	Snímok 41

