
Lecture 5: Reasoning with DL
2-AIN-108 Computational Logic

Martin Baláº, Martin Homola

Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

21 Oct 2014

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries

De�nition (Negation normal form)

A concept C is in negation normal form (NNF) i� the complement

constructor (¬) only occurs in front of atomic concept symbols

inside C .

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

Lemma

For every concept C there exists C ′ in NNF such that C ≡ C ′.

Proof.

We can always �push� ¬ inwards:

¬(E u F ) ≡ ¬E t ¬F
¬(E t F ) ≡ ¬E u ¬F
¬∃R.E ≡ ∀R.¬E
¬∀R.E ≡ ∃R.¬E

Since each C of �nite length we eventually end up with C ′ in NNF.

By structural induction C and C ′ are equivalent.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

Lemma

For every concept C there exists C ′ in NNF such that C ≡ C ′.

Proof.

We can always �push� ¬ inwards:

¬(E u F ) ≡ ¬E t ¬F
¬(E t F ) ≡ ¬E u ¬F
¬∃R.E ≡ ∀R.¬E
¬∀R.E ≡ ∃R.¬E

Since each C of �nite length we eventually end up with C ′ in NNF.

By structural induction C and C ′ are equivalent.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

De�nition (nnf(·))
Given any concept C , we denote by nnf(C ) a concept C ′ in NNF

s.t. C ≡ C ′.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

De�nition (Finite interpretations)

An interpretation (∆I , ·I) is �nite i� ∆I is a �nite set.

De�nition (Tree-shaped interpretations)

An interpretation (∆I , ·I) is tree-shaped i� (V ,E ), where V = ∆I

and E = {〈x , y〉 | (∃R ∈ NR) 〈x , y〉 ∈ RI}, is a tree.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

De�nition (Finite model property)

A DL L is said to have �nite model property i� for every satis�able

concept C that can be constructed in L there exists a �nite

interpretation I s.t. CI 6= ∅.

De�nition (Tree model property)

A DL L is said to have tree model property i� for every satis�able

concept C that can be constructed in L there exists a tree-shaped

interpretation I s.t. CI 6= ∅.

De�nition (Finite tree model property)

A DL L is said to have �nite tree model property i� for every

satis�able concept C that can be constructed in L there exists a

�nite tree-shaped interpretation I s.t. CI 6= ∅.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Preliminaries (cont.)

Theorem

ALC has the �nite tree model property.

Corollary

ALC has the �nite model property and the tree model property.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

De�nition (Completion tree)

A completion tree (CTree) is a triple T = (V ,E ,L) where (V ,E )
is a tree and L is a labeling function s.t.

L(x) is a set of concepts for all x ∈ V ;

L(〈x , y〉) is a set of roles for all 〈x , y〉 ∈ E .

De�nition (Successor, R-successor)

Given a CTree T = (V ,E ,L) and x , y ∈ V we say that:

y is a successor of x i� 〈x , y〉 ∈ E ;

y is an R-successor of x i� 〈x , y〉 ∈ E and R ∈ L(〈x , y〉).

Note: CTrees are representations of interpretations: V corresponds

to ∆I ; L(x) are the concepts to which x belongs; and similarly for

L(〈x , y〉) and 〈x , y〉.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

De�nition (Completion tree)

A completion tree (CTree) is a triple T = (V ,E ,L) where (V ,E )
is a tree and L is a labeling function s.t.

L(x) is a set of concepts for all x ∈ V ;

L(〈x , y〉) is a set of roles for all 〈x , y〉 ∈ E .

De�nition (Successor, R-successor)

Given a CTree T = (V ,E ,L) and x , y ∈ V we say that:

y is a successor of x i� 〈x , y〉 ∈ E ;

y is an R-successor of x i� 〈x , y〉 ∈ E and R ∈ L(〈x , y〉).

Note: CTrees are representations of interpretations: V corresponds

to ∆I ; L(x) are the concepts to which x belongs; and similarly for

L(〈x , y〉) and 〈x , y〉.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

De�nition (Completion tree)

A completion tree (CTree) is a triple T = (V ,E ,L) where (V ,E )
is a tree and L is a labeling function s.t.

L(x) is a set of concepts for all x ∈ V ;

L(〈x , y〉) is a set of roles for all 〈x , y〉 ∈ E .

De�nition (Successor, R-successor)

Given a CTree T = (V ,E ,L) and x , y ∈ V we say that:

y is a successor of x i� 〈x , y〉 ∈ E ;

y is an R-successor of x i� 〈x , y〉 ∈ E and R ∈ L(〈x , y〉).

Note: CTrees are representations of interpretations: V corresponds

to ∆I ; L(x) are the concepts to which x belongs; and similarly for

L(〈x , y〉) and 〈x , y〉.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

De�nition (Clash)

There is a clash in a CTree T = (V ,E ,L) i� for some x ∈ V and

for some concept C both C ∈ L(x) and ¬C ∈ L(x).

De�nition (Clash-free CTree)

A CTree T = (V ,E ,L) is clash-free i� there if none of the nodes in

V contains a clash.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

De�nition (Clash)

There is a clash in a CTree T = (V ,E ,L) i� for some x ∈ V and

for some concept C both C ∈ L(x) and ¬C ∈ L(x).

De�nition (Clash-free CTree)

A CTree T = (V ,E ,L) is clash-free i� there if none of the nodes in

V contains a clash.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

Algorithm (Concept satis�ability)

Input: concept C in NNF

Output: answers if C is satis�able or not

Steps:

1 Initialize a new CTree T := ({s0}, ∅, {s0 7→ {C}});
2 Apply tableau expansion rules (next slide) while at least one

rule is applicable;

3 Answer �C is satis�able� if T is clash-free.

Otherwise answer �C is unsatis�able�.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

ALC tableau expansion rules:

u-rule: if C1 u C2 ∈ L(x), x ∈ V and {C1,C2} * L(x)
then L(x) := L(x) ∪ {C1,C2}

t-rule: if C1 t C2 ∈ L(x), x ∈ V and {C1,C2} ∩ L(X ) = ∅
then either L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}

∀-rule: if ∀R.C ∈ L(x), x , y ∈ V , y R-successor of x , C /∈ L(y)
then L(y) := L(y) ∪ {C}

∃-rule: if ∃R.C ∈ L(x), x ∈ V with no R-successor y s.t. C ∈ L(y)
then V := V ∪ {z}, L(z) := {C} and L(〈x , z〉) := {R}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

ALC tableau expansion rules:

u-rule: if C1 u C2 ∈ L(x), x ∈ V and {C1,C2} * L(x)
then L(x) := L(x) ∪ {C1,C2}

t-rule: if C1 t C2 ∈ L(x), x ∈ V and {C1,C2} ∩ L(X ) = ∅
then either L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}

∀-rule: if ∀R.C ∈ L(x), x , y ∈ V , y R-successor of x , C /∈ L(y)
then L(y) := L(y) ∪ {C}

∃-rule: if ∃R.C ∈ L(x), x ∈ V with no R-successor y s.t. C ∈ L(y)
then V := V ∪ {z}, L(z) := {C} and L(〈x , z〉) := {R}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satis�ability of concepts always

terminates and it is sound and complete.

For proof see:

Attributive concept descriptions with complements.

Schmidt-Schauÿ, M., Smolka, G. Arti�cial Intelligence

48(1):1�26, 1991

Description logics handbook. Baader, F., et al., Cambridge

University Press, 2003

Semantic Investigations in Distributed Ontologies. Homola,

M., PhD. thesis, Comenius University, 2010

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Tableau Algorithm for ALC (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satis�ability of concepts always

terminates and it is sound and complete.

For proof see:

Attributive concept descriptions with complements.

Schmidt-Schauÿ, M., Smolka, G. Arti�cial Intelligence

48(1):1�26, 1991

Description logics handbook. Baader, F., et al., Cambridge

University Press, 2003

Semantic Investigations in Distributed Ontologies. Homola,

M., PhD. thesis, Comenius University, 2010

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox

Lemma

C v D i� > v ¬C t D

Idea:

To assure I |= C v D we may instead assure that

x ∈ (¬C t D)I for every x ∈ ∆

Add nnf(¬C t D) to L(x) for every x ∈ V

T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)
then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox

Lemma

C v D i� > v ¬C t D

Idea:

To assure I |= C v D we may instead assure that

x ∈ (¬C t D)I for every x ∈ ∆

Add nnf(¬C t D) to L(x) for every x ∈ V

T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)
then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox

Lemma

C v D i� > v ¬C t D

Idea:

To assure I |= C v D we may instead assure that

x ∈ (¬C t D)I for every x ∈ ∆

Add nnf(¬C t D) to L(x) for every x ∈ V

T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)
then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox

Lemma

C v D i� > v ¬C t D

Idea:

To assure I |= C v D we may instead assure that

x ∈ (¬C t D)I for every x ∈ ∆

Add nnf(¬C t D) to L(x) for every x ∈ V

T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)
then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox (cont.)

Problem: naive use of T -rule may lead to in�nite looping:

Let T = {C v ∃R.C}
Is C satis�able w.r.t. T ?

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox (cont.)

De�nition (Blocking)

Given a CTree T = (V ,E ,L), a node x ∈ V is blocked if it has an

ancestor y such that

either L(x) ⊆ L(y);

or y is blocked.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



ALC Tableaux Expansion Rules for TBoxes

u-rule: if C1 u C2 ∈ L(x), x ∈ V and {C1,C2} * L(x)
and x is not blocked

then L(x) := L(x) ∪ {C1,C2}
t-rule: if C1 t C2 ∈ L(x), x ∈ V and {C1,C2} ∩ L(X ) = ∅

and x is not blocked

then either L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}
∀-rule: if ∀R.C ∈ L(x), x , y ∈ V , y R-successor of x , C /∈ L(y)

and x is not blocked

then L(y) := L(y) ∪ {C}
∃-rule: if ∃R.C ∈ L(x), x ∈ V with no R-successor y s.t. C ∈ L(y)

and x is not blocked

then V := V ∪ {z}, L(z) := {C} and L(〈x , z〉) := {R}
T -rule: if C1 v C2 ∈ T , x ∈ V and nnf(¬C1 t C2) /∈ L(x)

and x is not blocked

then L(x) := L(x) ∪ {nnf(¬C1 t C2)}

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox (cont.)

Algorithm (Concept satis�ability w.r.t. TBox)

Input: concept C and T in NNF

Output: answers if C is satis�able w.r.t. T or not

Steps:

1 Initialize a new CTree T := ({s0}, ∅, {s0 7→ {C}});
2 Apply tableau expansion rules for TBoxes while at least one

rule is applicable;

3 Answer �C is satis�able w.r.t. T � if T is clash-free.

Otherwise answer �C is unsatis�able w.r.t. T �.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. a TBox (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satis�ability of concepts w.r.t.

a TBox always terminates and it is sound and complete.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. TBox and ABox

Idea: Encode A into the CTree

If a : C ∈ A
aI ∈ CI in every model I
add node a into T

add C into L(a)

If a, b : R ∈ A〈
aI , bI

〉
∈ RI in every model I

add nodes a, b into T

add R into L(〈a, b〉)

Note: T is no longer necessarily a tree

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. TBox and ABox

Idea: Encode A into the CTree

If a : C ∈ A
aI ∈ CI in every model I
add node a into T

add C into L(a)

If a, b : R ∈ A〈
aI , bI

〉
∈ RI in every model I

add nodes a, b into T

add R into L(〈a, b〉)

Note: T is no longer necessarily a tree

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. TBox and ABox

Algorithm (Concept satis�ability w.r.t. TBox and ABox)

Input: concept C and K = (T ,A) in NNF

Output: answers if C is satis�able w.r.t. K or not

Steps:
1 Initialize a CTree T as follows:

1 V := {a | constant a occurs in A} ∪ {s0} ;
2 E := {〈a, b〉 | a, b : R ∈ A for some role R} ;
3 L(a) := {nnf(E ) | a : E ∈ A} for all a ∈ V ;

L(〈a, b〉) := {R | a, b : R ∈ A} for all 〈a, b〉 ∈ E ;

L(s0) := {C}
2 Apply tableau expansion rules for TBoxes while at least one

rule is applicable;

3 Answer �C is satis�able w.r.t. K� if T is clash-free.

Otherwise answer �C is unsatis�able w.r.t. K�.

Note: Same algorithm can be used to verify just the consistency of

K, simply omit generation of s0 and its label during the intialization.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. TBox and ABox

Algorithm (Concept satis�ability w.r.t. TBox and ABox)

Input: concept C and K = (T ,A) in NNF

Output: answers if C is satis�able w.r.t. K or not

Steps:
1 Initialize a CTree T as follows:

1 V := {a | constant a occurs in A} ∪ {s0} ;
2 E := {〈a, b〉 | a, b : R ∈ A for some role R} ;
3 L(a) := {nnf(E ) | a : E ∈ A} for all a ∈ V ;

L(〈a, b〉) := {R | a, b : R ∈ A} for all 〈a, b〉 ∈ E ;

L(s0) := {C}
2 Apply tableau expansion rules for TBoxes while at least one

rule is applicable;

3 Answer �C is satis�able w.r.t. K� if T is clash-free.

Otherwise answer �C is unsatis�able w.r.t. K�.

Note: Same algorithm can be used to verify just the consistency of

K, simply omit generation of s0 and its label during the intialization.
Martin Baláº, Martin Homola Lecture 5: Reasoning with DL



Reasoning w.r.t. TBox and ABox

Theorem (Correctness)

The tableaux algorithm for deciding satis�ability of concepts w.r.t.

TBox and ABox always terminates and it is sound and complete.

Martin Baláº, Martin Homola Lecture 5: Reasoning with DL


