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Calculus

Intuitions:
© Formula PA (P — Q) — Q is a tautology.

@ Hence for any theory T: if T=EP and T = P — Q we can
conclude T = Q.

© We express this with with the derivation rule Modus Ponens:

P,P—Q
Q

Note: A tautology is a formula that is satisfied by any first order
structure. A contradiction is a formula that is unsatisfiable.
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Calculus (cont.)

O Calculus is a system which allows us to derive formulae by
derivation rules.

@ Derivation of a formula ® from T is called a proof of ® from
T.

© We denote by T F ¢ if formula @ is derived from T by the
calculus.
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Calculus (cont.)
Definition (Soundness)

A calculus is sound iff for all theories T and for all formulae ©,
THF ® implies T = o.

Definition (Completeness)

A calculus is complete iff for all theories T and for all formulae @,
T = & implies T - &.
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Calculus (cont.)

Definition (Substitution)

The formula resulting from ® by substitution of a variable x by
some term t (denoted ®{x/t}) is a formula W obtained from ® by
replacing every free occurrence of x by t.

A term t is substitutable for a variable x in a formula @ iff no
occurrence of a variable in t becomes bounded after the
substitution.
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Calculus (cont.)

Definition (Substitution)

The formula resulting from ® by substitution of a variable x by
some term t (denoted ®{x/t}) is a formula W obtained from ® by
replacing every free occurrence of x by t.

A term t is substitutable for a variable x in a formula @ iff no
occurrence of a variable in t becomes bounded after the
substitution.

Intuition: x is not substitutable for y in the following example:

¢ = (I)(y<x)
o{y/x} = (Bx)(x <x)
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Hilbert Calculus

Axioms
Q0 (P—=(Q—P))
Q@ (P-(Q@—R)—=((P— Q)= (P—R))
© ((-P Q) (@ P)
QO ((Vx)P — P{x/t})
where term t is substitutable for x in P
Q ((v)(P = Q) = (P = (vx)Q))
where x does not occur free in P
Inference Rules
e Modus Ponens (MP):

P,(P— Q)
Q

e Generalization (G):
P

(Vx)P
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Hilbert Calculus (cont.)

A proof of ® from T in Hilbert Calculus is a sequence
(P1,Dy,...,P,) s.t. &, = and for all 1 </ < n one of the
following holds:

@ O; instantiates an axiom;
Q CD,‘ eT;
© O, is derived from the formulae ®1,...,®; ;1 by one of the

derivation rules.

We write T = ® if there exists a proof from of ¢ from T.
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Prove:
(P(t) — (3x)P(x)) ie. (P(t) = —(¥x)~P(x))

where t is substitutable for x in P.
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Prove:
(P(t) — (3x)P(x)) ie. (P(t) = —(¥x)~P(x))

where t is substitutable for x in P.

Proof:
O ((Vx)—-P(x) — —P(t)) (Axiom 4)
Q (((Vx)=P(x) — =P(t)) — (P(t) — —=(Vx)=P(x))) (Axiom 3)
9 (P(t) — ~(Vx)—-P(x)) (MP)




Hilbert Calculus (cont.)

Theorem (Soundness & completeness)

Hilbert calculus for FOL is sound and complete.
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Resolution

Definition

A literal is either an atom or an atom preceded by negation (—).

Definition

A clause is a disjunction of literals.
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Resolution

Definition

A literal is either an atom or an atom preceded by negation (—).
Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

P(x) vV =Q(x) (1)
P)V Q) A S(x,y) (2)
(3x)P(x) (3)
(vx)(=P(x) v Q(x)) (4)
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Resolution

Definition

A literal is either an atom or an atom preceded by negation (—).

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

P(x) vV =Q(x) (1)
P)V Q) A S(x,y) (2)
(3x)P(x) (3)
(vx)(=P(x) v Q(x)) (4)

Note: we will understand clauses as closed, universally quantified
formulae, but we will omit the quantifiers.
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Resolution (cont)

Definition (Complementary literals)

Given any atom A, we say that the two literals A and —A are
complementary.

Intuition: (Simplified) resolution rule:

PVQ-PVR QVP,RV-P
QVR QVR

Note: we say that the two clauses PV Q and =PV R (RV —P)
containing complementary literals P and —P resolve into the single
clause Q V R.
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Negation Normal Form

Definition (Negation normal form)

A formula ¢ is in the negation normal form (NNF) iff {—, A, V} are
are the only allowed connectives and negation only occurs in front
of atoms in ¢.
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Negation Normal Form

Definition (Negation normal form)

A formula ¢ is in the negation normal form (NNF) iff {—, A, V} are
are the only allowed connectives and negation only occurs in front
of atoms in ¢.

Transform any formula into NNF:

@ Double negative law:
-=P/P

@ De Morgan's law:
~(PAQ)/(=PV—Q)
~(PV Q)/(-P A Q)

e Quantifiers:
—(Vx)P/(3x)-P
—(3Ix)P/(Vx)-P
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Prenex Normal Form

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form
(Qix1)...(Qnxn)F, n >0, where Q; is a quantifier, x; is a variable
and F is quantifier-free formula.
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Prenex Normal Form

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form
(Qix1)...(Qnxn)F, n >0, where Q; is a quantifier, x; is a variable
and F is quantifier-free formula.

Transform a formula in NNF into PNF — push quantifiers outwards:

e Conjunction:
(V)P AQ)/(vx)(PAQ) (QA(VX)P)/(Vx)(QAP)
(F)PAR)(EX)NPAQ) (”RAGEX)P)/(3x)(QAP)
if x does not appear as free variable in @

@ Disjunction:
(V)P V @)/ (vx)(PV Q) (QV(VX)P)/(Vx)(QV P)
(F)PVQR)(Ex)PVQ) (QV(IX)P)/(3x)(QV P)

if x does not appear as free variable in @
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Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only
universal quantifiers.
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Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only
universal quantifiers.

Skolemize a formula in PNF;:

@ Given ® = (Vx1)...(Vx,)(3y)V, replace (Jy)V with ¥ in
which every occurrence of y is replaced by f(x,...,x,) where
f is a new function symbol.

@ Repeat until the there are no existential quantifiers.
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Skolem Normal Form

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only
universal quantifiers.

Skolemize a formula in PNF;:

@ Given ® = (Vx1)...(Vx,)(3y)V, replace (Jy)V with ¥ in
which every occurrence of y is replaced by f(x,...,x,) where
f is a new function symbol.

@ Repeat until the there are no existential quantifiers.

Note: ® and the resulting formula &’ are equisatisfiable (i.e., one is
satisfiable iff the other one is). They are not necessarily equivalent.

Note: the new function f is called Skolem function. If f is nullary,
it is called Skolem constant.
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Conjunctive Normal Form

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a
conjunction of clauses.
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Conjunctive Normal Form

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a
conjunction of clauses.

Transform @ into CNF:
© Reduce eqgivalence and implication:
(P+ Q)/(P—QAN(QR—P)
(P—Q)/(=PVQ)
@ Negation Normal Form
© Prenex Normal Form
@ Skolem Normal Form

© Apply distributive law:
(PAQ)VR)/((PVR)A(QVR))
(PV(QAR)/((PVQ)A(PVR))
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Resolution (cont.)

Definition (Unification)

Given two literals P, @ and a substitution 6, we say that
Unify (P, Q,0) is true if PO = Q6.
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Resolution (cont.)

Resolution rule;

P1\/'”\/P,'\/"'\/Pm,Ql\/"'\/Qj\/"'\/Qn,Unify(P;,—!Qj,e)
PiVv---VP VPV VP V@@LV -V Qi1 Vi1 V-V Qo

where for all k,/: Py, Q are literals.
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Resolution (cont.)

Given a first order theory T and any formula ¢ we have: T |= ¢ iff
T U{—¢} is unsatisfiable.
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Resolution

Algorithm: Resolution
Input: FOL theory T, formula ¢
Output: True if T = ¢

Q@ Transform T U {—¢} into CNF, yielding a set of clauses.
@ Exhaustively apply the resolution rule to all possible clauses
that contain complementary literals
o all repeated literals are removed
o all clauses with complementary literals are discarded
© if empty clause is derived answer “True” T A —¢ is not
satisfiable; answer “False” if it is not possible to resolve any
more clauses.
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T
and ®, if the algorithm answers “True” then T = ® (soundness)
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T
and ®, if the algorithm answers “True” then T = ® (soundness),
and, if T = ® the algorithm answers “True” (completeness).
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T
and ®, if the algorithm answers “True” then T = ® (soundness),
and, if T = ® the algorithm answers “True” (completeness).

Theorem (Termination)

If T |= ® then the resolution algorithm eventually terminates, given
T and ® on input.
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Resolution (cont.)

Theorem (Soundness & completeness)

The resolution algorithm is sound and complete, i.e., given input T
and ®, if the algorithm answers “True” then T = ® (soundness),
and, if T = ® the algorithm answers “True” (completeness).

Theorem (Termination)

If T |= ® then the resolution algorithm eventually terminates, given
T and ® on input.

Note: the resolution algorithm may not terminate, if T [~ ® — the
algorithm is semidecidable.
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