Lecture 2: Reasoning with FOL 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

30 Sep 2013

Martin Baláž, Martin Homola [Lecture 2: Reasoning with FOL](#page-32-0)

and and

④ → → 三

つくい

Calculus

Intuitions:

- **1** Formula $P \wedge (P \rightarrow Q) \rightarrow Q$ is a tautology.
- **2** Hence for any theory $T:$ if $T \models P$ and $T \models P \rightarrow Q$ we can conclude $T \models Q$.
- ³ We express this with with the derivation rule Modus Ponens:

$$
\frac{P, P \rightarrow Q}{Q}
$$

Note: A tautology is a formula that is satisfied by any first order structure. A contradiction is a formula that is unsatisfiable.

④何 ト ④ 目 ト ④ 目

- **1** Calculus is a system which allows us to derive formulae by derivation rules.
- 2 Derivation of a formula Φ from T is called a proof of Φ from τ .
- **3** We denote by $T \vdash \phi$ if formula Φ is derived from T by the calculus.

 Ω

Definition (Soundness)

A calculus is sound iff for all theories T and for all formulae Φ , $T \vdash \Phi$ implies $T \models \Phi$.

Definition (Completeness)

A calculus is complete iff for all theories T and for all formulae Φ , $T \models \Phi$ implies $T \vdash \Phi$.

 \leftarrow \Box

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ obtained from Φ by replacing every free occurrence of x by t . A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

 Ω

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ obtained from Φ by replacing every free occurrence of x by t . A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

Intuition: x is not substitutable for y in the following example:

$$
\Phi = (\exists x)(y < x)
$$

$$
\Phi\{y/x\} = (\exists x)(x < x)
$$

Hilbert Calculus

Axioms

\n- **①**
$$
(P \rightarrow (Q \rightarrow P))
$$
\n- **②** $((P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)))$
\n- **②** $((\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P))$
\n- **③** $((\forall x)P \rightarrow P\{x/t\})$ where term *t* is substitutable for *x* in *P*
\n- **④** $((\forall x)(P \rightarrow Q) \rightarrow (P \rightarrow (\forall x)Q))$
\n

where x does not occur free in \emph{P}

Inference Rules

Modus Ponens (MP):

$$
\frac{P,(P\rightarrow Q)}{Q}
$$

Generalization (G):

$$
\frac{P}{(\forall x)P}
$$

 $-10⁻¹⁰$

4 年

A proof of Φ from T in Hilbert Calculus is a sequence $\langle \Phi_1, \Phi_2, \ldots, \Phi_n \rangle$ s.t. $\Phi_n = \Phi$ and for all $1 \leq i \leq n$ one of the following holds:

 \mathbf{D} Φ_i instantiates an axiom;

- $2 \Phi_i \in \mathcal{T}$
- **∋** Φ; is derived from the formulae $\Phi_1, \ldots, \Phi_{i-1}$ by one of the derivation rules.

We write $T \vdash \Phi$ if there exists a proof from of Φ from T.

つくい

Prove:

$$
(P(t) \to (\exists x)P(x)) \quad \text{i.e} \quad (P(t) \to \neg(\forall x) \neg P(x))
$$

where t is substitutable for x in P .

◆ロト → 御ト → 君ト → 君

目

 \rightarrow

Prove:

$$
(P(t) \to (\exists x)P(x)) \quad \text{i.e.} \quad (P(t) \to \neg(\forall x) \neg P(x))
$$

where t is substitutable for x in P .

Proof:

$$
\mathbf{D}((\forall x)\neg P(x)\rightarrow \neg P(t))
$$
 (Axiom 4)

\n- $$
(\left(\forall x\right) \neg P(x) \rightarrow \neg P(t)) \rightarrow \left(P(t) \rightarrow \neg(\forall x)\neg P(x)\right)
$$
 (Axiom 3)
\n- $(P(t) \rightarrow \neg(\forall x)\neg P(x))$ (MP)
\n

4日)

 \sim

化重复 化重变

目

Hilbert calculus for FOL is sound and complete.

 \leftarrow \Box

重

э

 Ω

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

イロメ イ母メ イヨメ イヨメ

E

 QQ

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$
P(x) \vee \neg Q(x) \tag{1}
$$

$$
P(x) \vee Q(x) \wedge S(x, y) \tag{2}
$$

$$
(\exists x)P(x) \tag{3}
$$

$$
(\forall x)(\neg P(x) \lor Q(x)) \tag{4}
$$

 $-10⁻¹⁰$

- 4 国 8 14

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$
P(x) \vee \neg Q(x) \tag{1}
$$

$$
P(x) \vee Q(x) \wedge S(x, y) \tag{2}
$$

$$
(\exists x)P(x) \tag{3}
$$

ഹൈ

$$
(\forall x)(\neg P(x) \vee Q(x)) \tag{4}
$$

Note: we will understand clauses as closed, universally quantified formulae, but we will omit the quantifiers.

Definition (Complementary literals)

Given any atom A, we say that the two literals A and $\neg A$ are complementary.

Intuition: (Simplified) resolution rule:

$$
\frac{P \vee Q, \neg P \vee R}{Q \vee R} \quad \frac{Q \vee P, R \vee \neg P}{Q \vee R}
$$

Note: we say that the two clauses $P \vee Q$ and $\neg P \vee R$ $(R \vee \neg P)$ containing complementary literals P and $\neg P$ resolve into the single clause $Q \vee R$.

つへい

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \wedge, \vee\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

医阿里氏阿里氏

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \wedge, \vee\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

Transform any formula into NNF:

- **•** Double negative law: $\neg\neg P/P$
- De Morgan's law: $\neg (P \land Q)/(\neg P \lor \neg Q)$ $\neg (P \lor Q)/(\neg P \land \neg Q)$
- Quantifiers:

$$
\neg(\forall x)P/(\exists x)\neg P
$$

$$
\neg(\exists x)P/(\forall x)\neg P
$$

医阿雷氏阿雷氏

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)\ldots (Q_nx_n)$ F, $n\geq 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

- 何 ▶ → ヨ ▶ → ヨ ▶

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)\ldots (Q_nx_n)$ F, $n\geq 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

Transform a formula in NNF into $PNF -$ push quantifiers outwards:

- **•** Conjunction: $((\forall x)P \wedge Q)/(\forall x)(P \wedge Q)$ $(Q \wedge (\forall x)P)/(\forall x)(Q \wedge P)$ $((\exists x)P \wedge Q)/(\exists x)(P \wedge Q)$ $(Q \wedge (\exists x)P)/(\exists x)(Q \wedge P)$ if x does not appear as free variable in Q
- **•** Disjunction:

 $((\forall x)P \vee Q)/(\forall x)(P \vee Q)$ $(Q \vee (\forall x)P)/(\forall x)(Q \vee P)$ $((\exists x)P \vee Q)/(\exists x)(P \vee Q)$ $(Q \vee (\exists x)P)/(\exists x)(Q \vee P)$ if x does not appear as free variable in Q

←ロ ▶ (母) (ヨ) (ヨ) 。

つくい

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

 $-10⁻¹⁰$

 \rightarrow \equiv \rightarrow \rightarrow

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantiers.

Skolemize a formula in PNF:

- $\textbf{1}$ Given $\Phi=(\forall x_1) \ldots (\forall x_n)(\exists y) \Psi$, replace $(\exists y) \Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \ldots, x_n)$ where f is a new function symbol.
- **2** Repeat until the there are no existential quantifiers.

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantiers.

Skolemize a formula in PNF:

 $\textbf{1}$ Given $\Phi=(\forall x_1) \ldots (\forall x_n)(\exists y) \Psi$, replace $(\exists y) \Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \ldots, x_n)$ where f is a new function symbol.

2 Repeat until the there are no existential quantifiers.

Note: Φ and the resulting formula Φ' are equisatisfiable (i.e., one is satisfiable iff the other one is). They are not necessarily equivalent.

Note: the new function f is called Skolem function. If f is nullary, it is called Skolem constant.

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

 $-10⁻¹⁰$

 \rightarrow \equiv \rightarrow \rightarrow

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

Transform Φ into CNF:

- **1** Reduce eqivalence and implication: $(P \leftrightarrow Q)/(P \rightarrow Q) \wedge (Q \rightarrow P)$ $(P \rightarrow Q)/(\neg P \vee Q)$
- **2** Negation Normal Form
- **3** Prenex Normal Form
- **4** Skolem Normal Form
- **6** Apply distributive law: $((P \wedge Q) \vee R)/((P \vee R) \wedge (Q \vee R))$ $(P \vee (Q \wedge R))/(P \vee Q) \wedge (P \vee R))$

つくい

4 年

Definition (Unification)

Given two literals P , Q and a substitution θ , we say that Unify (P, Q, θ) is true if $P\theta = Q\theta$.

Martin Baláž, Martin Homola [Lecture 2: Reasoning with FOL](#page-0-0)

and in

④何 ト ④ 目 ト ④ 目

э

 Ω

Resolution rule:

 $P_1 \vee \cdots \vee P_i \vee \cdots \vee P_m,$ $Q_1 \vee \cdots \vee Q_j \vee \cdots \vee Q_n,$ Unify $(P_i, \neg Q_j, \theta)$ $\overline{P_1 \vee \cdots \vee P_{i-1} \vee P_{i+1} \vee \cdots \vee P_m \vee Q_1 \vee \cdots \vee Q_{i-1} \vee Q_{i+1} \vee \cdots \vee Q_n \theta}$ where for all $k, l: P_k, Q_l$ are literals.

ACRES э

Theorem

Given a first order theory T and any formula ϕ we have: $T \models \phi$ iff $T \cup \{\neg \phi\}$ is unsatisfiable.

Martin Baláž, Martin Homola [Lecture 2: Reasoning with FOL](#page-0-0)

キロメ メ都 メメ きょうくぼ メー

E

 QQ

Algorithm: Resolution Input: FOL theory T, formula ϕ Output: True if $T \models \phi$

- **1** Transform $T \cup \{\neg \phi\}$ into CNF, yielding a set of clauses.
- ² Exhaustively apply the resolution rule to all possible clauses that contain complementary literals
	- all repeated literals are removed
	- all clauses with complementary literals are discarded
- **•** if empty clause is derived answer "True" $T \wedge \neg \phi$ is not satisfiable; answer "False" if it is not possible to resolve any more clauses.

つくい

The resolution algorithm is sound and complete

 \blacksquare

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

Note: the resolution algorithm may not terminate, if $\mathcal{T} \not\models \Phi$ – the algorithm is semidecidable.