Lecture 2: Reasoning with FOL 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

30 Sep 2013

Calculus

Intuitions:

- Formula $P \land (P \rightarrow Q) \rightarrow Q$ is a tautology.
- General Hence for any theory T: if T ⊨ P and T ⊨ P → Q we can conclude T ⊨ Q.
- **3** We express this with with the derivation rule Modus Ponens:

$$rac{P,P
ightarrow Q}{Q}$$

Note: A tautology is a formula that is satisfied by any first order structure. A contradiction is a formula that is unsatisfiable.

- Calculus is a system which allows us to derive formulae by derivation rules.
- **2** Derivation of a formula Φ from T is called a proof of Φ from T.
- **③** We denote by T ⊢ φ if formula Φ is derived from T by the calculus.

Definition (Soundness)

A calculus is sound iff for all theories T and for all formulae Φ , $T \vdash \Phi$ implies $T \models \Phi$.

Definition (Completeness)

A calculus is complete iff for all theories T and for all formulae Φ , $T \models \Phi$ implies $T \vdash \Phi$.

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ obtained from Φ by replacing every free occurrence of x by t. A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

Definition (Substitution)

The formula resulting from Φ by substitution of a variable x by some term t (denoted $\Phi\{x/t\}$) is a formula Ψ obtained from Φ by replacing every free occurrence of x by t. A term t is substitutable for a variable x in a formula Φ iff no occurrence of a variable in t becomes bounded after the substitution.

Intuition: x is not substitutable for y in the following example:

$$\Phi = (\exists x)(y < x)$$

$$\Phi\{y/x\} = (\exists x)(x < x)$$

Hilbert Calculus

Axioms

$$((\forall x)(P \to Q) \to (P \to (\forall x)Q)) where x does not occur free in P$$

Inference Rules

• Modus Ponens (MP):

$$\frac{P, (P \to Q)}{Q}$$

• Generalization (G):

$$\frac{P}{(\forall x)P}$$

A proof of Φ from T in Hilbert Calculus is a sequence $\langle \Phi_1, \Phi_2, \ldots, \Phi_n \rangle$ s.t. $\Phi_n = \Phi$ and for all $1 \le i \le n$ one of the following holds:

- **(1)** Φ_i instantiates an axiom;
- Φ_i is derived from the formulae $\Phi_1, \ldots, \Phi_{i-1}$ by one of the derivation rules.

We write $T \vdash \Phi$ if there exists a proof from of Φ from T.

Prove:

$$(P(t) \rightarrow (\exists x)P(x))$$
 i.e. $(P(t) \rightarrow \neg(\forall x)\neg P(x))$

where t is substitutable for x in P.

Prove:

$$(P(t) \rightarrow (\exists x)P(x))$$
 i.e. $(P(t) \rightarrow \neg(\forall x)\neg P(x))$

where t is substitutable for x in P.

Proof:

$$\begin{array}{l} \bullet & ((\forall x) \neg P(x) \rightarrow \neg P(t)) & (Axiom \ 4) \\ \bullet & (((\forall x) \neg P(x) \rightarrow \neg P(t)) \rightarrow (P(t) \rightarrow \neg (\forall x) \neg P(x))) & (Axiom \ 3) \\ \bullet & (P(t) \rightarrow \neg (\forall x) \neg P(x)) & (MP) \end{array}$$

æ

Hilbert calculus for FOL is sound and complete.

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

(*) *) *) *)

э

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$P(x) \vee \neg Q(x) \tag{1}$$

$$P(x) \lor Q(x) \land S(x, y) \tag{2}$$

$$(\exists x) P(x) \tag{3}$$

$$(\forall x)(\neg P(x) \lor Q(x)) \tag{4}$$

Definition

A literal is either an atom or an atom preceded by negation (\neg) .

Definition

A clause is a disjunction of literals.

Example: Which of the following formulae are clauses?

$$P(x) \lor \neg Q(x) \tag{1}$$

$$P(x) \lor Q(x) \land S(x, y) \tag{2}$$

$$(\exists x) P(x) \tag{3}$$

$$(\forall x)(\neg P(x) \lor Q(x)) \tag{4}$$

Note: we will understand clauses as closed, universally quantified formulae, but we will omit the quantifiers.

Definition (Complementary literals)

Given any atom A, we say that the two literals A and $\neg A$ are complementary.

Intuition: (Simplified) resolution rule:

$$\frac{P \lor Q, \neg P \lor R}{Q \lor R} \quad \frac{Q \lor P, R \lor \neg P}{Q \lor R}$$

Note: we say that the two clauses $P \lor Q$ and $\neg P \lor R$ $(R \lor \neg P)$ containing complementary literals P and $\neg P$ resolve into the single clause $Q \lor R$.

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \land, \lor\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

Definition (Negation normal form)

A formula ϕ is in the negation normal form (NNF) iff $\{\neg, \land, \lor\}$ are are the only allowed connectives and negation only occurs in front of atoms in ϕ .

Transform any formula into NNF:

- Double negative law:
 ¬¬P/P
- De Morgan's law: $\neg (P \land Q)/(\neg P \lor \neg Q)$ $\neg (P \lor Q)/(\neg P \land \neg Q)$
- Quantifiers:

$$\neg(\forall x)P/(\exists x)\neg P$$

 $\neg(\exists x)P/(\forall x)\neg P$

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

Definition (Prenex normal form)

A formula is in prenex normal form (PNF) iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

Transform a formula in NNF into PNF – push quantifiers outwards:

• Conjunction:

 $\begin{array}{l} ((\forall x)P \land Q)/(\forall x)(P \land Q) \quad (Q \land (\forall x)P)/(\forall x)(Q \land P) \\ ((\exists x)P \land Q)/(\exists x)(P \land Q) \quad (Q \land (\exists x)P)/(\exists x)(Q \land P) \\ \text{if x does not appear as free variable in Q} \end{array}$

• Disjunction:

 $\begin{array}{l} ((\forall x)P \lor Q)/(\forall x)(P \lor Q) \quad (Q \lor (\forall x)P)/(\forall x)(Q \lor P) \\ ((\exists x)P \lor Q)/(\exists x)(P \lor Q) \quad (Q \lor (\exists x)P)/(\exists x)(Q \lor P) \\ \text{if x does not appear as free variable in Q} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Skolemize a formula in PNF:

- Given $\Phi = (\forall x_1) \dots (\forall x_n) (\exists y) \Psi$, replace $(\exists y) \Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \dots, x_n)$ where f is a new function symbol.
- 2 Repeat until the there are no existential quantifiers.

Definition (Skolem normal form)

A formula is in Skolem normal form (SNF) iff it is in PNF with only universal quantifiers.

Skolemize a formula in PNF:

- Given $\Phi = (\forall x_1) \dots (\forall x_n) (\exists y) \Psi$, replace $(\exists y) \Psi$ with Ψ' in which every occurrence of y is replaced by $f(x_1, \dots, x_n)$ where f is a new function symbol.
- 2 Repeat until the there are no existential quantifiers.

Note: Φ and the resulting formula Φ' are equisatisfiable (i.e., one is satisfiable iff the other one is). They are not necessarily equivalent.

Note: the new function f is called Skolem function. If f is nullary, it is called Skolem constant.

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

Definition (Conjunctive normal form)

A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses.

Transform Φ into CNF:

• Reduce eqivalence and implication: $(P \leftrightarrow Q)/(P \rightarrow Q) \land (Q \rightarrow P)$ $(P \rightarrow Q)/(\neg P \lor Q)$

- 2 Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- Apply distributive law: $\frac{((P \land Q) \lor R)}{((P \lor R) \land (Q \lor R))}$ $\frac{(P \lor (Q \land R))}{((P \lor Q) \land (P \lor R))}$

Definition (Unification)

Given two literals P, Q and a substitution θ , we say that $Unify(P, Q, \theta)$ is true if $P\theta = Q\theta$.

- ∢ ⊒ ▶

Resolution rule:

 $\frac{P_1 \vee \cdots \vee P_i \vee \cdots \vee P_m, Q_1 \vee \cdots \vee Q_j \vee \cdots \vee Q_n, Unify(P_i, \neg Q_j, \theta)}{P_1 \vee \cdots \vee P_{i-1} \vee P_{i+1} \vee \cdots \vee P_m \vee Q_1 \vee \cdots \vee Q_{j-1} \vee Q_{j+1} \vee \cdots \vee Q_n \theta}$ where for all $k, l: P_k, Q_l$ are literals.

Theorem

Given a first order theory T and any formula ϕ we have: $T \models \phi$ iff $T \cup \{\neg\phi\}$ is unsatisfiable.

 Algorithm: Resolution Input: FOL theory *T*, formula ϕ Output: True if $T \models \phi$

- Transform $T \cup \{\neg\phi\}$ into CNF, yielding a set of clauses.
- Exhaustively apply the resolution rule to all possible clauses that contain complementary literals
 - all repeated literals are removed
 - all clauses with complementary literals are discarded
- If empty clause is derived answer "True" T ∧ ¬φ is not satisfiable; answer "False" if it is not possible to resolve any more clauses.

The resolution algorithm is sound and complete

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness)

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

The resolution algorithm is sound and complete, i.e., given input T and Φ , if the algorithm answers "True" then $T \models \Phi$ (soundness), and, if $T \models \Phi$ the algorithm answers "True" (completeness).

Theorem (Termination)

If $T \models \Phi$ then the resolution algorithm eventually terminates, given T and Φ on input.

Note: the resolution algorithm may not terminate, if $T \not\models \Phi$ – the algorithm is semidecidable.