
Lecture 8: Prolog
2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

18 Nov 2014

Martin Baláž, Martin Homola Lecture 8: Prolog

Example

Logic Program:

father(abraham, isaac) ←
mother(sarah, isaac) ←
father(isaac , jacob) ←

parent(X ,Y) ← father(X ,Y)
parent(X ,Y) ← mother(X ,Y)

ancestor(X ,Y) ← parent(X ,Y)
ancestor(X ,Z) ← parent(X ,Y), ancestor(Y ,Z)

Query:

(∃X)(∃Y)ancestor(X ,Y)?

Answer:
Yes for X = abraham,Y = isaac; X = sarah,Y = isaac;
X = abraham,Y = jacob.

Martin Baláž, Martin Homola Lecture 8: Prolog

Programming with Prolog

Problem

Program

Query

Yes/No

Substitution(s)

Solution(s)

Modeling

Searching
proofs

Interpretation

Martin Baláž, Martin Homola Lecture 8: Prolog

First-Order Logic

T |= (∃X)(∃Y)ancestor(X ,Y) iff

for all interpretations I holds
I |= T ⇒ I |= (∃X)(∃Y)ancestor(X ,Y) iff

there does not exist an interpretation I such that I |= T but
I 6|= (∃X)(∃Y)ancestor(X ,Y) iff

there does not exist an interpretation I such that I |= T and
I |= (∀X)(∀Y)¬ancestor(X ,Y) iff

there does not exist an interpretation I such that
I |= T ∪ {(∀X)(∀Y)¬ancestor(X ,Y)} iff

T ∪ {(∀X)(∀Y)¬ancestor(X ,Y)} is unsatisfiable

Martin Baláž, Martin Homola Lecture 8: Prolog

First-Order Logic

(a) father(abraham, isaac)
(b) mother(sarah, isaac)
(c) father(isaac , jacob)
(d) ¬father(X ,Y) ∨ parent(X ,Y)

(e) ¬mother(X ,Y) ∨ parent(X ,Y)

(f) ¬parent(X ,Y) ∨ ancestor(X ,Y)

(g) ¬parent(X ,Y) ∨ ¬ancestor(Y ,Z) ∨ ancestor(X ,Z)

(1) ¬ancestor(X ,Y) (Query)
(2) ¬parent(X ,Y) (Resolution of 1 and f using θ1 = {})
(3) ¬father(X ,Y) (Resolution of 2 and d using θ2 = {})
(4) ⊥ (Resolution of 3 and a using θ3 = {X/abraham,Y /isaac})

Martin Baláž, Martin Homola Lecture 8: Prolog

Logic Programming

P |= (∃X)(∃Y)ancestor(X ,Y) iff

P ∪ {(∀X)(∀Y)¬ancestor(X ,Y)} is unsatisfiable iff

P ∪ {← ancestor(X ,Y)} is unsatisfiable

Martin Baláž, Martin Homola Lecture 8: Prolog

Logic Programming

(a) father(abraham, isaac)←
(b) mother(sarah, isaac)←
(c) father(isaac , jacob)←
(d) parent(X ,Y)← father(X ,Y)

(e) parent(X ,Y)← mother(X ,Y)

(f) ancestor(X ,Y)← parent(X ,Y)

(g) ancestor(X ,Z)← parent(X ,Y), ancestor(Y ,Z)

(1) ← ancestor(X ,Y) (Query)
(2) ← parent(X ,Y) (Resolution of 1 and f using θ1 = {})
(3) ← father(X ,Y) (Resolution of 2 and d using θ2 = {})
(4) ← (Resolution of 3 and a using θ3 = {X/abraham,Y /isaac})

Martin Baláž, Martin Homola Lecture 8: Prolog

Resolution for Definite Logic Programs

SLD-resolution ≡ Linear resolution with Selection function for
Definite clauses.

Definition (Definite Goal)

A definite goal is a rule of the form

← A1, . . . ,An

where 0 ≤ n and each Ai , 0 < i ≤ n, is an atom.

Definition (Resolvent)

Let G be a definite goal ← A1, . . . ,Ak−1,Ak ,Ak+1, . . . ,Am,
Ak be a selected atom, and r be a definite rule B0 ← B1, . . . ,Bn.
We say that a goal G ′ is a resolvent derived from G and r using θ
if θ is the most general unifier of Ak and B0 and G ′ has the form
← (A1, . . . ,Ak−1,B1, . . . ,Bn,Ak+1, . . . ,Am)θ.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLD-Derivation

Definition (SLD-derivation)

Let P be a definite logic program and G be a definite goal. An
SLD-derivation of P ∪ {G} is a (posibly infinite) sequence of goals
G = G0, . . . ,Gi , . . . , where each Gi+1 is a resolvent obtained from
Gi and a rule ri+1 from P using θi+1.

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal ←. A failed derivation
ends in non-empty goal with the property that all atoms does not
unify with the head of any rule. An infinite derivation is an infinite
sequence of goals.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLD-Tree

Definition (SLD-Tree)

Let P be a definite logic program and G be a definite goal.
An SLD-tree for P ∪ {G} is a minimal tree satisfying the following:

Each node of the tree is a (possibly empty) definite goal
The root is G
If G ′ is a node of the tree and G ′′ is a resolvent derived from
G ′, then G ′ has a child G ′′

Standard Prolog
selects the first literal in the goal
chooses rules for unification in order as they appear in the
logic program
uses depth-first search strategy

Martin Baláž, Martin Homola Lecture 8: Prolog

Answer

Definition (Correct Answer)

Let P be a definite logic program and G be a definite goal
← A1, . . . ,An. An answer for P ∪{G} is a substitution for variables
in G . An answer θ for P ∪ {G} is correct iff P |= (A1, . . . ,An)θ.

Definition (Computed Answer)

Let G0, . . . ,Gn be a successful derivation using θ1, . . . , θn. Then
θ1 . . . θn restricted to the variables of G is the computed answer.

Martin Baláž, Martin Homola Lecture 8: Prolog

Soundness and Completeness

Theorem (Soundness)

Let P be a definite logic program and G be a definite goal. Every
computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

Theorem (Completeness)

Let P be a definite logic program and G be a definite goal. For
every correct answer θ for P ∪ {G} there exists a computed answer
σ for P ∪ {G} and a substitution γ such that θ = σγ.

Fact (Termination)

SLD-resolution may not terminate.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLDNF-Resolution

SLD-resolution augmented by the negation as failure rule.

Definition (Normal Goal)

A normal goal is a rule of the form

← L1, . . . , Ln

where 0 ≤ n and each Li , 0 < i ≤ n, is a literal.

Definition (Resolvent)

Let G be a normal goal ← L1, . . . , Lk−1, Lk , Lk+1, . . . , Lm,
Lk be a selected atom A, and r be a normal rule B0 ← M1, . . . ,Mn.
We say that a goal G ′ is a resolvent derived from G and r using θ
if θ is the most general unifier of Lk and B0 and G ′ has the form
← (L1, . . . , Lk−1,M1, . . . ,Mn, Lk+1, . . . , Lm)θ.

Martin Baláž, Martin Homola Lecture 8: Prolog

Negation as Failure

Definition (Negation as Failure Rule)

Let G be a normal goal ← L1, . . . , Lk−1, Lk , Lk+1, . . . , Lm and
Lk be a selected negated atom ∼A. We say that a normal goal G ′

is obtained from G using negation as failure rule if
P ∪ {← A} has finitely failed SLDNF-tree and G ′ has the form
← L1, . . . , Lk−1, Lk+1, . . . , Lm.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLDNF-Derivation

Definition (SLDNF-Derivation)

Let P be a normal logic program and G be a normal goal.
An SLDNF-derivation of P ∪ {G} is a (possibly infinite) sequence
of goals G = G0, . . . ,Gi , . . . where each Gi+1

is derived from Gi and a rule ri+1 from P using θi+1, or
is obtained from Gi using negation as failure rule on selected
literal ∼A. In such case, ri+1 = ← A and θi+1 is identity.

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal ←. A failed derivation
ends in non-empty goal with the property that the selected literal is

an atom which do not unify with the head of any rule, or
a negated atom which do not have finitely failed SLDNF-tree.

An infinite derivation is an infinite sequence of goals.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLDNF-Tree

Definition (SLDNF-Tree)

Let P be a normal logic program and G be a normal goal.
An SLDNF-tree for P ∪ {G} is a minimal tree satisfying the
following:

Each node of the tree is a (possibly empty) normal goal
The root is G
If G ′ is a node of the tree and G ′′ is a resolvent derived from
G ′, then G ′ has a child G ′′

If G ′ is a node of the tree and G ′′ is obtained from G ′ using
negation as failure rule, then G ′ has a child G ′′

Definition (Finitely Failed SLDNF-Tree)

A finitely failed SLDNF-tree is finite and has only failed branches.

Martin Baláž, Martin Homola Lecture 8: Prolog

SLDNF-Derivation and SLDNF-Tree

Please note, that SLDNF-tree is defined in terms of
SLDNF-derivation, and SLDNF-derivation is defined in terms of
SLDNF-tree. Such cyclic definitions are not correct. Proper
definitions are much more complex, although they capture the same
idea. They can be found in:

Lloyd, J. W. (1987). Foundations of Logic Programming. Springer.

Martin Baláž, Martin Homola Lecture 8: Prolog

Answer

Definition (Correct Answer)

Let P be a normal logic program and G be a normal goal
← L1, . . . , Ln. An answer for P ∪ {G} is a substitution for
variables in G . An answer θ for P ∪ {G} is correct iff
Comp(P) |= (L1, . . . , Ln)θ.

Definition (Computed Answer)

Let G0, . . . ,Gn be a successful derivation using θ1, . . . , θn. Then
θ1 . . . θn restricted to the variables of G is the computed answer.

Martin Baláž, Martin Homola Lecture 8: Prolog

Soundness and Completeness

Theorem (Soundness)

Let P be a normal logic program and G be a normal goal. Every
computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

Fact (Termination)

SLDNF-resolution may not terminate.

Fact (Completeness)

SLDNF-resolution is not complete. Even if it terminates, it may not
compute all answers (see floundering).

Martin Baláž, Martin Homola Lecture 8: Prolog

Floundering

man(dilbert). man(bill).
husband(bill).
single(X) :- man(X), \+ husband(X).

?- single(X).
X = dilbert; No

man(dilbert). man(bill).
husband(bill).
single(X) :- \+ husband(X), man(X).

?- single(X).
No

Martin Baláž, Martin Homola Lecture 8: Prolog

Floundering

What is the nature of floundering problem?

If we want to resolve ← ∼ husband(X), according to the “negation
as failure” rule, we check whether P ∪ {← husband(X)} has finitely
failed SLDNF-tree.
Recall that ← ∼ husband(X) stands for ∼(∃X)∼ husband(X),
and ← husband(X) stands for ∼(∃X)husband(X). They are not
complementary formulas!

On the other hand, if we want to resolve ← ∼ husband(dilbert),
we check whether P ∪ {← husband(dilbert)} has finitely failed
SLDNF-tree. In this case, ∼ husband(dilbert) and husband(dilbert)
are complementary. Flounering problem can occur only when we
resolve negated atom containing a variable.

Martin Baláž, Martin Homola Lecture 8: Prolog

Ordering of Rules Matters

on(a, b). on(b, c).
above(X, Y) :- on(X, Y).
above(X, Y) :- above(X, Z), on(Z, Y).

?- above(a, c).
Yes;
Error: Stack overflow.

on(a, b). on(b, c).
above(X, Y) :- above(X, Z), on(Z, Y).
above(X, Y) :- on(X, Y).

?- above(a, c).
Error: Stack overflow.

Martin Baláž, Martin Homola Lecture 8: Prolog

Ordering of Literals Matters

on(a, b). on(b, c).
above(X, Y) :- on(X, Y).
above(X, Y) :- above(X, Z), on(Z, Y).

?- above(a, c).
Yes;
Error: Stack overflow.

on(a, b). on(b, c).
above(X, Y) :- on(X, Y).
above(X, Y) :- on(Z, Y), above(X, Z).

?- above(a, c).
Yes;
No.

Martin Baláž, Martin Homola Lecture 8: Prolog

