Lecture 8: Prolog 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

18 Nov 2014

Example

Logic Program:

$$\begin{array}{rcl} \textit{father}(\textit{abraham},\textit{isaac}) &\leftarrow &\\ \textit{mother}(\textit{sarah},\textit{isaac}) &\leftarrow &\\ \textit{father}(\textit{isaac},\textit{jacob}) &\leftarrow &\\ & \textit{parent}(X,Y) &\leftarrow &\textit{father}(X,Y) \\ & \textit{parent}(X,Y) &\leftarrow &\textit{mother}(X,Y) \\ & \textit{ancestor}(X,Y) &\leftarrow &\textit{parent}(X,Y) \\ & \textit{ancestor}(X,Z) &\leftarrow &\textit{parent}(X,Y),\textit{ancestor}(Y,Z) \end{array}$$

Query:

$$(\exists X)(\exists Y)$$
ancestor (X, Y) ?

Answer:

Yes for
$$X = abraham$$
, $Y = isaac$; $X = sarah$, $Y = isaac$; $X = abraham$, $Y = jacob$.

æ

P

A.

First-Order Logic

 $T \models (\exists X)(\exists Y)$ ancestor(X, Y) iff

for all interpretations I holds $I \models T \Rightarrow I \models (\exists X)(\exists Y) \text{ ancestor}(X, Y)$ iff

there does not exist an interpretation I such that $I \models T$ but $I \not\models (\exists X)(\exists Y)$ ancestor(X, Y) iff

there does not exist an interpretation I such that $I \models T$ and $I \models (\forall X)(\forall Y) \neg ancestor(X, Y)$ iff

there does not exist an interpretation I such that $I \models T \cup \{(\forall X)(\forall Y) \neg ancestor(X, Y)\}$ iff

 $T \cup \{(\forall X)(\forall Y) \neg ancestor(X, Y)\}$ is unsatisfiable

First-Order Logic

- (a) father(abraham, isaac)
- (b) mother(sarah, isaac)
- (c) father(isaac, jacob)

(d)
$$\neg$$
father(X, Y) \lor parent(X, Y)

(e)
$$\neg$$
 mother(X, Y) \lor parent(X, Y)

(f)
$$\neg parent(X, Y) \lor ancestor(X, Y)$$

(g)
$$\neg parent(X, Y) \lor \neg ancestor(Y, Z) \lor ancestor(X, Z)$$

(1)
$$\neg ancestor(X, Y)$$
 (Query)
(2) $\neg parent(X, Y)$ (Resolution of 1 and f using $\theta_1 = \{\}$)
(3) $\neg father(X, Y)$ (Resolution of 2 and d using $\theta_2 = \{\}$)
(4) \bot (Resolution of 3 and a using $\theta_3 = \{X/abraham, Y/isaac\}$)

$$P \models (\exists X)(\exists Y)$$
ancestor (X, Y) iff
 $P \cup \{(\forall X)(\forall Y) \neg$ ancestor $(X, Y)\}$ is unsatisfiable iff
 $P \cup \{\leftarrow ancestor(X, Y)\}$ is unsatisfiable

æ

A.

Logic Programming

- (a) father(abraham, isaac) \leftarrow
- (b) mother(sarah, isaac) \leftarrow
- (c) father(isaac, jacob) \leftarrow
- (d) $parent(X, Y) \leftarrow father(X, Y)$
- (e) $parent(X, Y) \leftarrow mother(X, Y)$
- (f) $ancestor(X, Y) \leftarrow parent(X, Y)$
- (g) $ancestor(X, Z) \leftarrow parent(X, Y), ancestor(Y, Z)$
- $(1) \leftarrow ancestor(X, Y)$ (Query) $(2) \leftarrow parent(X, Y)$ (Resolution of 1 and f using $\theta_1 = \{\}$) $(3) \leftarrow father(X, Y)$ (Resolution of 2 and d using $\theta_2 = \{\}$) $(4) \leftarrow$ (Resolution of 3 and a using $\theta_3 = \{X/abraham, Y/isaac\}$)

Resolution for Definite Logic Programs

 $\mathsf{SLD}\text{-}\mathsf{resolution}\equiv\mathsf{Linear}$ resolution with Selection function for Definite clauses.

Definition (Definite Goal)

A definite goal is a rule of the form

$$\leftarrow A_1, \ldots, A_n$$

where $0 \le n$ and each A_i , $0 < i \le n$, is an atom.

Definition (Resolvent)

Let G be a definite goal $\leftarrow A_1, \ldots, A_{k-1}, A_k, A_{k+1}, \ldots, A_m, A_k$ be a selected atom, and r be a definite rule $B_0 \leftarrow B_1, \ldots, B_n$. We say that a goal G' is a resolvent derived from G and r using θ if θ is the most general unifier of A_k and B_0 and G' has the form $\leftarrow (A_1, \ldots, A_{k-1}, B_1, \ldots, B_n, A_{k+1}, \ldots, A_m)\theta$.

・ロト ・ 一 ・ ・ ・ ・

Definition (SLD-derivation)

Let *P* be a definite logic program and *G* be a definite goal. An SLD-derivation of $P \cup \{G\}$ is a (posibly infinite) sequence of goals $G = G_0, \ldots, G_i, \ldots$, where each G_{i+1} is a resolvent obtained from G_i and a rule r_{i+1} from *P* using θ_{i+1} .

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal \leftarrow . A failed derivation ends in non-empty goal with the property that all atoms does not unify with the head of any rule. An infinite derivation is an infinite sequence of goals.

Definition (SLD-Tree)

Let *P* be a definite logic program and *G* be a definite goal. An SLD-tree for $P \cup \{G\}$ is a minimal tree satisfying the following:

- Each node of the tree is a (possibly empty) definite goal
- The root is G
- If G' is a node of the tree and G'' is a resolvent derived from G', then G' has a child G''

Standard Prolog

- selects the first literal in the goal
- chooses rules for unification in order as they appear in the logic program
- uses depth-first search strategy

Definition (Correct Answer)

Let *P* be a definite logic program and *G* be a definite goal $\leftarrow A_1, \ldots, A_n$. An answer for $P \cup \{G\}$ is a substitution for variables in *G*. An answer θ for $P \cup \{G\}$ is correct iff $P \models (A_1, \ldots, A_n)\theta$.

Definition (Computed Answer)

Let G_0, \ldots, G_n be a successful derivation using $\theta_1, \ldots, \theta_n$. Then $\theta_1 \ldots \theta_n$ restricted to the variables of G is the computed answer.

Theorem (Soundness)

Let P be a definite logic program and G be a definite goal. Every computed answer for $P \cup \{G\}$ is a correct answer for $P \cup \{G\}$.

Theorem (Completeness)

Let P be a definite logic program and G be a definite goal. For every correct answer θ for $P \cup \{G\}$ there exists a computed answer σ for $P \cup \{G\}$ and a substitution γ such that $\theta = \sigma \gamma$.

Fact (Termination)

SLD-resolution may not terminate.

SLDNF-Resolution

SLD-resolution augmented by the negation as failure rule.

Definition (Normal Goal)

A normal goal is a rule of the form

$$\leftarrow L_1, \ldots, L_n$$

where $0 \le n$ and each L_i , $0 < i \le n$, is a literal.

Definition (Resolvent)

Let *G* be a normal goal $\leftarrow L_1, \ldots, L_{k-1}, L_k, L_{k+1}, \ldots, L_m$, L_k be a selected atom *A*, and *r* be a normal rule $B_0 \leftarrow M_1, \ldots, M_n$. We say that a goal *G'* is a resolvent derived from *G* and *r* using θ if θ is the most general unifier of L_k and B_0 and *G'* has the form $\leftarrow (L_1, \ldots, L_{k-1}, M_1, \ldots, M_n, L_{k+1}, \ldots, L_m)\theta$.

Definition (Negation as Failure Rule)

Let G be a normal goal $\leftarrow L_1, \ldots, L_{k-1}, L_k, L_{k+1}, \ldots, L_m$ and L_k be a selected negated atom $\sim A$. We say that a normal goal G' is obtained from G using negation as failure rule if $P \cup \{\leftarrow A\}$ has finitely failed SLDNF-tree and G' has the form $\leftarrow L_1, \ldots, L_{k-1}, L_{k+1}, \ldots, L_m$.

Definition (SLDNF-Derivation)

Let *P* be a normal logic program and *G* be a normal goal. An SLDNF-derivation of $P \cup \{G\}$ is a (possibly infinite) sequence of goals $G = G_0, \ldots, G_i, \ldots$ where each G_{i+1}

- is derived from G_i and a rule r_{i+1} from P using θ_{i+1} , or
- is obtained from G_i using negation as failure rule on selected literal $\sim A$. In such case, $r_{i+1} = \leftarrow A$ and θ_{i+1} is identity.

Definition (Successful, Failed, and Infinite Derivation)

A successful derivation ends in empty goal \leftarrow . A failed derivation ends in non-empty goal with the property that the selected literal is

- an atom which do not unify with the head of any rule, or
- a negated atom which do not have finitely failed SLDNF-tree.

An infinite derivation is an infinite sequence of goals.

Definition (SLDNF-Tree)

Let *P* be a normal logic program and *G* be a normal goal. An SLDNF-tree for $P \cup \{G\}$ is a minimal tree satisfying the following:

- Each node of the tree is a (possibly empty) normal goal
- The root is G
- If G' is a node of the tree and G'' is a resolvent derived from G', then G' has a child G''
- If G' is a node of the tree and G'' is obtained from G' using negation as failure rule, then G' has a child G''

Definition (Finitely Failed SLDNF-Tree)

A finitely failed SLDNF-tree is finite and has only failed branches.

Please note, that SLDNF-tree is defined in terms of SLDNF-derivation, and SLDNF-derivation is defined in terms of SLDNF-tree. Such cyclic definitions are not correct. Proper definitions are much more complex, although they capture the same idea. They can be found in:

Lloyd, J. W. (1987). Foundations of Logic Programming. Springer.

Definition (Correct Answer)

Let *P* be a normal logic program and *G* be a normal goal $\leftarrow L_1, \ldots, L_n$. An answer for $P \cup \{G\}$ is a substitution for variables in *G*. An answer θ for $P \cup \{G\}$ is correct iff $Comp(P) \models (L_1, \ldots, L_n)\theta$.

Definition (Computed Answer)

Let G_0, \ldots, G_n be a successful derivation using $\theta_1, \ldots, \theta_n$. Then $\theta_1 \ldots \theta_n$ restricted to the variables of G is the computed answer.

Theorem (Soundness)

Let P be a normal logic program and G be a normal goal. Every computed answer for $P \cup \{G\}$ is a correct answer for $P \cup \{G\}$.

Fact (Termination)

SLDNF-resolution may not terminate.

Fact (Completeness)

SLDNF-resolution is not complete. Even if it terminates, it may not compute all answers (see floundering).

```
man(dilbert). man(bill).
husband(bill).
single(X) := man(X), \ + husband(X).
?- single(X).
X = dilbert; No
man(dilbert). man(bill).
husband(bill).
single(X) := + husband(X), man(X).
?- single(X).
No
```

What is the nature of floundering problem?

If we want to resolve $\leftarrow \sim husband(X)$, according to the "negation as failure" rule, we check whether $P \cup \{\leftarrow husband(X)\}$ has finitely failed SLDNF-tree.

Recall that $\leftarrow \sim husband(X)$ stands for $\sim (\exists X) \sim husband(X)$, and $\leftarrow husband(X)$ stands for $\sim (\exists X) husband(X)$. They are not complementary formulas!

On the other hand, if we want to resolve $\leftarrow \sim husband(dilbert)$, we check whether $P \cup \{\leftarrow husband(dilbert)\}$ has finitely failed SLDNF-tree. In this case, $\sim husband(dilbert)$ and husband(dilbert)are complementary. Flounering problem can occur only when we resolve negated atom containing a variable.

```
on(a, b). on(b, c).
above(X, Y) := on(X, Y).
above(X, Y) := above(X, Z), on(Z, Y).
?- above(a, c).
Yes:
Error: Stack overflow.
on(a, b). on(b, c).
above(X, Y) := above(X, Z), on(Z, Y).
above(X, Y) := on(X, Y).
?- above(a, c).
```

Error: Stack overflow.

Ordering of Literals Matters

```
on(a, b). on(b, c).
above(X, Y) := on(X, Y).
above(X, Y) := above(X, Z), on(Z, Y).
?- above(a, c).
Yes:
Error: Stack overflow.
on(a, b). on(b, c).
above(X, Y) := on(X, Y).
above(X, Y) := on(Z, Y), above(X, Z).
?- above(a, c).
Yes;
No.
```