Lecture 5: Logic Programming 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

23 Oct 2012

 $-10-1$

father(abraham, isaac) ← mother(sarah, isaac) \leftarrow father(isaac, jacob) \leftarrow $parent(X, Y) \leftarrow father(X, Y)$ $parent(X, Y) \leftarrow mother(X, Y)$ grandparent(X, Z) \leftarrow parent(X, Y) \land parent(Y, Z) $\text{arcestor}(X, Y) \leftarrow \text{parent}(X, Y)$ $\textit{ancestor}(X, Z) \leftarrow \textit{parent}(X, Y) \wedge \textit{ancestor}(Y, Z)$

∢ 何 ゝ ´ ∢ ∃ ゝ ´ ∢ ∃ ゝ ´ 。

目

 Ω

Definition (Literal)

A literal is an atom or the negation of an atom.

Definition (Rule)

A rule is a formula of the form

$$
L_1 \vee \cdots \vee L_m \leftarrow L_{m+1} \wedge \cdots \wedge L_n
$$

where $0 \le m \le n$ and each L_i , $0 \le i \le n$, is a literal.

Definition (Program)

A logic program is a finite set of rules.

Rules

.

Each rule

$$
L_1 \vee \cdots \vee L_m \leftarrow L_{m+1} \wedge \cdots \wedge L_n
$$

can be viewed as a clause

$$
L_1 \vee \cdots \vee L_m \vee \neg L_1 \vee \cdots \vee \neg L_n
$$

A fact is a rule of the form

 $L \leftarrow$

A constraint is a rule of the form

$$
\leftarrow L_1 \vee \cdots \vee L_n
$$

 \rightarrow - \leftarrow \equiv

э \rightarrow э

4 0 8

Example

$$
P = \left\{\begin{array}{rcl} p(c, Y, Y) & \leftarrow \\ p(f(X), Y, Z) & \leftarrow & p(X, f(Y), Z) \end{array}\right\}
$$
\n
$$
L = p(f(c), c, f(c))
$$

$$
P \models L
$$

- \bullet domain $\mathbb N$
- interpretation function /

•
$$
c' = 0
$$

\n• $f' = x \mapsto x + 1$
\n• $p' = \{(x, y, z) | z = x + y\}$
\n• $p' = \{(x, y, z) | z = x + y\}$
\n• $p' = \{(x, y, z) | z = 2^{x+y}\}$

K ロ ⊁ K 何 ⊁ K 手

目

∍ $\,$

 \sim

Definition (Herbrand Universe)

A term is ground if it does not contain variables. The Herbrand universe is the set U of all ground terms.

Definition (Herbrand Base)

An atom is ground if it does not contain variables. The Herbrand base is the set β of all ground atoms.

Definition (Herbrand Interpretation)

A Herbrand interpretation is an interpretation $\mathcal{I} = (\mathcal{U}, I)$ such that

$$
f'=(t_1,\ldots,t_n)\mapsto f(t_1,\ldots,t_n)
$$

for each function symbol f with arity n.

 Ω

Back to the Example

$$
P = \left\{\begin{array}{rcl} p(c, Y, Y) & \leftarrow \\ p(f(X), Y, Z) & \leftarrow & p(X, f(Y), Z) \end{array}\right\}
$$
\n
$$
L = p(f(c), c, f(c))
$$

$$
P \models L
$$

- domain $U = \{c, f(c), f(f(c)), f(f(f(c))), \dots\}$
- interpretation function /

\n- $$
c' = c
$$
\n- $f' = x \mapsto f(x)$
\n- $p' = \{(x, y, z) \mid x = f^a(c) \land y = f^b(c) \land z = f^{a+b}(c)\}$
\n

 299

∍

Theorem

A logic program is satisfiable iff it has a Herbrand model.

Proof.

Each Herbrand model is a model, i.e. if a logic program has a Herbrand model, it has a model. If $\mathcal{I} = (D, I)$ is a model of P then a Herbrand interpretation $\mathcal{J} = (\mathcal{U}, J)$ such that

$$
J(p) = \{(t_1,\ldots,t_n) \mid l \models p(t_1,\ldots,t_n)\}
$$

is a Herbrand model of P.

K 何 ⊁ (ヨ)

The previous theorem holds only for clauses, it does not hold for arbitrary closed formulas.

Let S be $\{p(a),(\exists X)\neg p(X)\}\)$. The Herbrand universe is $\mathcal{U} = \{a\}$ and the Herbrand base is $\mathcal{B} = \{p(a)\}\.$ We have two Herbrand interpretations, $(\{a\},l_1)$, $\rho^{l_1}=\emptyset$ (i.e. $\rho(a)$ is false), and $(\{a\},l_2)$, $\rho^{l_2}=\{(a)\}$ (i.e. $\rho(a)$ is true). In both cases, S is not satisfied.

But if we take the domain $D = \{0, 1\}$ and the interpretation function I_3 with $a^{I_3}=0$, $\rho^{I_3}=\{(0)\}$, then (D,I_3) is a model of S.

Definite Logic Program

Definition (Definite Rule)

A definite rule is a rule of the form

$$
A_0 \leftarrow A_1 \wedge \cdots \wedge A_n
$$

where $0 \leq n$ and each A_i , $0 \leq i \leq n$, is an atom.

Definition (Definite Logic Program)

A logic program is definite if it contains only definite rules.

Definition (Definite Goal)

A definite goal is a rule of the form

$$
\leftarrow A_1 \wedge \cdots \wedge A_n
$$

where $0 \leq n$ and each $A_i, 1 \leq i \leq n$, is an atom.

 Q Q

$$
P \models (\exists X_1) \dots (\exists X_k)(A_1 \land \dots \land A_n)?
$$

Is $P \cup \{\neg(\exists X_1) \dots (\exists X_k)(A_1 \land \dots \land A_n)\}$ unsatisfiable?
Is $P \cup \{(\forall X_1) \dots (\forall X_k)(\neg A_1 \lor \dots \lor \neg A_n)\}$ unsatisfiable?
Is $P \cup \{\leftarrow A_1 \land \dots \land A_n\}$ unsatisfiable?

 \overline{a}

Ε

∍ $\,$

∍

Lemma

Let P be a definite logic program and M be a non-empty set of Herbrand models of P. Then $\bigcap_{M\in\mathcal{M}}M$ is a Herbrand model of P.

Theorem

Every definite logic program P has the least Herbrand model (denoted M_P).

Proof.

The set of all Herbrand models is non-empty, because the Herbrand base β is a model of P. Therefore the intersection of all Herbrand models is the least Herbrand model of P.

つくへ

Theorem

Let P be a definite logic program. Then $M_P = \{A \in \mathcal{B}_P \mid P \models A\}$.

Proof.

 $P \models A$ iff $P \cup \{\sim A\}$ is unsatisfiable iff $P \cup \{\sim A\}$ has no Herbrand models iff \sim A is false w.r.t. all Herbrand models of P iff A is true w.r.t. all Herbrand models of P iff $A \in M_P$.

つくへ

Definition (Immediate Consequence Operator)

Let P be a definite logic program. An immediate consequence operator T_P is defined as follows:

$$
\mathcal{T}_{P}(I) = \{A \in \mathcal{B}_{P} \mid A \leftarrow A_{1} \land \cdots \land A_{n} \in \text{Ground}(P), \\ \{A_{1}, \ldots, A_{m}\} \subseteq I\}
$$

The iteration $T_P \uparrow n$ is defined as follows:

$$
T_P \uparrow 0 = \emptyset
$$

\n
$$
T_P \uparrow (n+1) = T_P (T_P \uparrow n)
$$

\n
$$
T_P \uparrow \omega = \bigcup_{n < \omega} T_P \uparrow n
$$

Theorem

Let M_P be the least model of P. Then $M_P = T_P \uparrow \omega$.

Martin Baláž, Martin Homola [Lecture 5: Logic Programming](#page-0-0)

K ロ ト K 何 ト

 QQ

Normal Logic Program

Definition (Normal Rule)

A normal rule is a rule of the form

$$
A \leftarrow L_1 \wedge \cdots \wedge L_n
$$

where $0 \le n$, A is an atom, and each L_i , $1 \le i \le n$, is a literal.

Definition (Normal Logic Program)

A logic program is normal if it contains only normal rules.

Definition (Normal Goal)

A normal goal is a rule of the form

$$
\leftarrow L_1 \land \cdots \land L_n
$$

where $0 \leq n$ and each L_i , $1 \leq i \leq n$, is a literal.

 Q Q

Reasoning with Negation

$$
P \models (\exists X_1) \dots (\exists X_k) (L_1 \land \dots \land L_n)?
$$

Is $P \cup \{\neg(\exists X_1) \dots (\exists X_k) (L_1 \land \dots \land L_n)\}$ unsatisfiable?
Is $P \cup \{(\forall X_1) \dots (\forall X_k) (\neg L_1 \lor \dots \lor \neg L_n)\}$ unsatisfiable?
Is $P \cup \{\leftarrow L_1 \land \dots \land L_n\}$ unsatisfiable?

student(joe) \leftarrow student(bill) \leftarrow

 $P \models student(jim)$? $P \models \neg student(jim)$?

$$
student(x) \leftrightarrow x = joe \lor x = bill
$$

 $-10⁻¹⁰$

Þ

∢ 何 ▶ ((手) (く手) ()

First step:

$$
p(x_1,\ldots,x_m)\leftarrow x_1=t_1\wedge\cdots\wedge x_m=t_m\wedge L_1\wedge\cdots\wedge L_n
$$

where x_1, \ldots, x_m are variables not occuring in $L_1 \wedge \cdots \wedge L_n$ and $p(t_1, \ldots, t_m) \leftarrow L_1 \wedge \cdots \wedge L_n$ is a normal rule.

Second step:

$$
p(x_1,\ldots,x_m)\leftrightarrow E_1\vee\cdots\vee E_k
$$

where each E_i has the form $x_1 = t_1 \wedge \cdots \wedge x_m = t_m \wedge L_1 \wedge \cdots \wedge L_n$ $E_1, \ldots E_k$ are all transformed rules from the first step with the predicate symbol p in the head, and x_1, \ldots, x_m are new variables.