# Lecture 6: Hypothetical Reasoning 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

### Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava



21 Mar 2013

## Definition (Inference Rule)

An inference rule r is an expression

$$\frac{\phi_1,\ldots,\phi_m}{\phi_0}$$

where  $0 \leq m$  and  $\phi_0, \ldots, \phi_m$  are well-formed formulas.

The formulas  $pre(r) = \{\phi_1, \ldots, \phi_m\}$  are called the *prerequisites* and the formula  $cons(r) = \phi_0$  is called the *consequent* of r.

### Definition (Deductive System)

A *deductive system* is a set of inference rules.

## Definition (Provability)

Let *R* be a deductive system and *T* be a theory. A formula  $\phi$  is *provable* from *T* in *R* (denoted  $T \vdash_R \phi$ ) if there exists a sequence of inference rules  $r_1, \ldots, r_n$ ,  $0 \le n$ , in *R* such that

- $pre(r_i) \subseteq T \cup \{cons(r_1), \ldots, cons(r_{i-1})\}$  for each  $0 < i \le n$
- $\phi \in T \cup \{cons(r_1), \ldots, cons(r_n)\}$

## Definition (Deductive Closure)

Let R be a deductive system and T be a theory. By  $Cn_R(T)$  we denote the smallest theory T' which

- contains T, i.e.  $T \subseteq T'$
- is closed under R, i.e. for each inference rule r ∈ R, if pre(r) ⊆ T' then cons(r) ∈ T'.

### Theorem

Let R be a deductive system and T be a theory in a language  $\mathcal{L}$ . Then  $Cn_R(T) = \{\phi \in \mathcal{L} \mid T \vdash_R \phi\}.$  Birds usually fly (except penguins, ostriches, birds with boken wings,  $\dots$ ). Tweety is a bird.

Birds usually fly (except penguins, ostriches, birds with boken wings,  $\dots$ ). Tweety is a bird.

Classical Logic:

$$\forall X(bird(X) \land \neg penguin(X) \land \neg ostrich(X) \land \land \neg broken\_wing(X) \land \cdots \supset fly(X))$$
  
bird(tweety) \land \neg penguin(tweety) \land \neg ostrich(tweety) \land \land \neg broken\\_wing(tweety) \land \ldots

## Definition (Default)

A *default* is an expression d of the form

$$\frac{\phi_1,\ldots,\phi_m:\phi_{m+1},\ldots,\phi_n}{\phi_0}$$

where  $0 \le m < n$  and  $\phi_0, \ldots, \phi_n$  are well-formed formulas.

The formulas  $pre(d) = \{\phi_1, \dots, \phi_m\}$  are called the *prerequisites*, the formulas  $just(d) = \{\phi_{m+1}, \dots, \phi_n\}$  are called the *justifications*, and the formula  $cons(d) = \phi_0$  is called the *consequence* of *d*.

The intuitive meaning of a default is the following:

If  $\phi_1, \ldots, \phi_m$  are true, and we can assume  $\phi_{m+1}, \ldots, \phi_n$ , then  $\phi_0$  is true.

# Exceptions in Default Logic

Birds usually fly (except penguins, ostriches, birds with boken wings,  $\dots$ ). Tweety is a bird.

Default Logic:

$$\frac{bird(X):fly(X)}{fly(X)}$$

$$\forall X(penguin(X) \supset \neg fly(X))$$
  
 $\forall X(ostrich(X) \supset \neg fly(X))$   
 $\forall X(bird(X) \land broken\_wing(X) \supset \neg fly(X))$ 

... bird(tweety)

(\* ) \* ) \* ) \* )

If  $R(\overline{x})$  is not derived  $(\neg R(\overline{x}) \text{ can be assumed})$ , we conclude  $\neg R(\overline{x})$ .

:  $\neg employee(X)$  $\neg$ *employee*(X)

employee(peter)
employee(bob)

 $\neg$ *employee*(*alice*)?

< ∃ >

# Frame Problem (Yale Shooting Problem)

In dynamic worlds, what is not affected by actions, is unchanged.

$$\frac{holds(F, S), action(A) : holds(F, do(A, S))}{holds(F, do(A, S))}$$
$$\frac{\neg holds(F, S), action(A) : \neg holds(F, do(A, S))}{\neg holds(F, do(A, S))}$$

 $\forall S \ holds(loaded, do(load, S)) \\ \forall S \neg holds(loaded, do(shoot, S)) \\ \forall S \neg holds(alive, do(shoot, S)) \\ action(load), action(wait), action(shoot) \\ holds(alive, s_0) \end{cases}$ 

Richard Nixon is a Republican and at the same time a Quaker. Republicans are usually not Pacifists, but Quakers are.

$$\frac{republican(X): \neg pacifist(X)}{\neg pacifist(X)}$$
$$\frac{quaker(X): pacifist(X)}{pacifist(X)}$$

republican(nixon) quaker(nixon) Classical Logic is monotonic:

```
If T \vdash \phi then T' \vdash \phi for all T \subseteq T'.
```

Default Logic is nonmonotonic:

Consider a simple theory consisting of the single default  $\frac{a}{b}$ . Thus *b* may be believed. If subsequently  $\neg a$  is observed we then have the new theory in which *b* cannot be believed.

In nonmonotonic logics, beliefs can be revised in the presence of new information.

## Definition (Default Theory)

A default theory is a pair  $\Delta = (D, W)$  where

- D is a set of defaults
- W is a classical theory

We assume a sound and complete deductive system R.

We assume that all formulas in D and W are closed, i.e. they do not contain free variables. If they do, we substitute all ground terms for each free variable.

## Definition (Contextual Provability)

Let  $\Delta = (D, W)$  be a default theory and E be a theory. A formula  $\phi$  is *provable* from  $\Delta$  in the *context* E (denoted  $W \vdash_{D(E)} \phi$ ) iff there exists a sequence of defaults  $d_1, \ldots, d_n$ ,  $0 \le n$ , such that

- $W \cup \{cons(d_1), \dots, cons(d_{i-1})\} \vdash cons(d_i) \text{ for each } 0 < i \leq n$
- $\overline{just(d_i)} \cap E = \emptyset$  for each  $0 < i \le n$
- $W \cup \{cons(d_1), \ldots, cons(d_n)\} \vdash \phi$

By D(E) we denote the set of inference rules  $\{pre(d)/cons(d) \mid d \in D, \overline{just(d)} \cap E = \emptyset\}.$ 

## Definition (Operator $\Gamma_{\Delta}$ )

Let  $\Delta = (D, W)$  be a default theory and E be a theory. By  $\Gamma_{\Delta}(E)$  we denote the smallest theory E' which

- contains W, i.e.  $W \subseteq E'$
- is closed under R, i.e.  $Cn_R(E') = E'$
- is closed under D(E), i.e.  $Cn_{D(E)}(E') = E'$

#### Theorem

Let  $\Delta = (D, W)$  be a default theory and E be a theory in a language  $\mathcal{L}$ . Then  $\Gamma_{\Delta}(E) = \{\phi \in \mathcal{L} \mid W \vdash_{D(E)} \phi\}.$ 

## Definition (Default Extension)

Let  $\Delta$  be a default theory. A theory *E* is a *default extension* of  $\Delta$  iff  $\Gamma_{\Delta}(E) = E$ .

### Example (No Extension)

Neither  $E_1 = Cn_R(\emptyset)$  nor  $E_2 = Cn_R(\{p\})$  is a default extension of  $\Delta = (\{\frac{:\neg p}{p}\}, \emptyset).$ 

#### Example (Many Extensions)

Both  $E_1 = Cn_R(\{p\})$  and  $E_2 = Cn_R(\{q\})$  are default extensions of  $\Delta = (\{\frac{:\neg p}{q}, \frac{:\neg q}{p}\}, \emptyset).$ 

# Iterative Characterization of Extensions

### Theorem

Let  $\Delta = (D, W)$  be a default theory and E be a theory. Define

$$E_0 = W$$
  
$$E_{i+1} = Cn_R(E_i) \cup \{cons(d) \mid d \in D(E), pre(d) \subseteq E_i\}$$

Then E is an extension of  $\Delta$  iff  $E = \bigcup_{i=0}^{\infty} E_i$ .

## Proof.

We can observe that

(D1) 
$$W \subseteq \bigcup_{i=0}^{\infty} E_i$$

(D2) 
$$Cn_R(\bigcup_{i=0}^{\infty} E_i) = \bigcup_{i=0}^{\infty} E_i$$

(D3) 
$$Cn_{D(E)}(\bigcup_{i=0}^{\infty} E_i) = \bigcup_{i=0}^{\infty} E_i$$

By the minimality of  $\Gamma_{\Delta}(E)$ , we have  $\Gamma_{\Delta}(E) \subseteq \bigcup_{i=0}^{\infty} E_i$ .

## Proof (Continued).

 $(\Rightarrow)$  Let E be a default extension of  $\Delta$ , i.e.  $\Gamma_{\Lambda}(E) = E$ . We show that  $E = \bigcup_{i=0}^{\infty} E_i$ . (a)  $E = \Gamma_{\Delta}(E) \subseteq \bigcup_{i=0}^{\infty} E_i$ (b) We inductively show that  $\bigcup_{i=0}^{\infty} E_i \subseteq \Gamma_{\Delta}(E) = E$ . (1)  $E_0 = W \subseteq E$ (2) Let  $E_i \subseteq E$ . We show that  $E_{i+1} \subseteq E$ . Consider  $\phi \in E_{i+1}$ . (i) If  $\phi \in Cn_R(E_i)$  then  $\phi \in E$  since  $Cn_R(E) = E$ . (ii) Let  $d \in D(E)$  be a rule with  $cons(d) = \phi$  and  $pre(d) \subseteq E_i$ . Since  $E_i \subseteq E$ ,  $pre(d) \subseteq E$ . Then  $\phi \in E$  since  $Cn_{D(E)}(E) = E.$ 

## Proof (Continued).

( $\Leftarrow$ ) Let  $E = \bigcup_{i=0}^{\infty} E_i$ . We show that E is a default extension of  $\Delta$ , i.e.  $\Gamma_{\Lambda}(E) = E$ . (a)  $\Gamma_{\Lambda}(E) \subseteq \bigcup_{i=0}^{\infty} E_i = E$ (b) We inductively show that  $E = \bigcup_{i=0}^{\infty} E_i \subseteq \Gamma_{\Delta}(E)$ . (1)  $E_0 = W \subset \Gamma_{\Lambda}(E)$ (2) Let  $E_i \subseteq \Gamma_{\Delta}(E)$ . We show that  $E_{i+1} \subseteq \Gamma_{\Delta}(E)$ . Consider  $\phi \in E_{i+1}$ . (i) If  $\phi \in Cn_R(E_i)$  then  $\phi \in Cn_R(\Gamma_{\Delta}(E)) = \Gamma_{\Delta}(E)$  since  $E_i \subset \Gamma_{\Lambda}(E).$ (ii) Let  $d \in D(E)$  be a rule with  $cons(d) = \phi$  and  $pre(d) \subseteq E_i$ . Since  $E_i \subseteq \Gamma_{\Delta}(E)$ ,  $pre(d) \subseteq \Gamma_{\Delta}(E)$ . Then  $\phi \in \Gamma_{\Delta}(E)$  since  $Cn_{D(E)}(\Gamma_{\Delta}(E)) = \Gamma_{\Delta}(E).$ 

▶ < ∃ ▶</p>

# Consistency of Extensions

#### Theorem

A default theory  $\Delta = (D, W)$  has an inconsistent extension iff W is inconsistent.

### Proof.

$$Cn_R(W) \subseteq Cn_R(E) \subseteq \mathcal{L}$$
, i.e. *E* is inconsistent.

## Corollary

If a default theory has an inconsistent extension then this is its only extension.

#### Theorem

Default extensions are minimal, i.e. if  $E \subseteq F$  are default extensions then E = F.

### Proof.

By the iterative characterization,  $E = \bigcup_{i=0}^{\infty}$ ,  $F = \bigcup_{i=0}^{\infty}$ . We inductively prove that  $F_i \subseteq E_i$  for all  $0 \le i$ , i.e.  $F \subseteq E$ .

Exceptions in Default Logic:

$$\frac{bird(X):fly(X)}{fly(X)}$$

Closed World Assumption:

 $\frac{: \neg employee(X)}{\neg employee(X)}$ 

Frame Problem:

$$\frac{holds(F,S), action(A) : holds(F, do(A, S))}{holds(F, do(A, S))}$$

### Definition (Normal Default Theory)

A default *d* is normal iff  $just(d) = \{cons(d)\}$ . A default theory  $\Delta = (D, W)$  is normal iff every default in *D* is normal.

### Theorem

Every normal default theory has an extension.

## Proof.

Let  $\Delta = (D, W)$  be a normal default theory. If W is inconsistent, then  $\mathcal{L}$  is an extension of  $\Delta$ . Let W be consistent and  $E = \bigcup_{i=0}^{\infty} E_i$  where

$$E_0 = W$$
$$E_{i+1} = Cn_R(E_i) \cup T_i$$

We choose maximal  $T_i$  such that

- $E_i \cup T_i$  is consistent, and
- $T_i \subseteq \{cons(d) \mid d \in D, pre(d) \subseteq E_i\}.$

## Proof (Continued).

Let  $T'_i = \{cons(d) \mid d \in D(E), pre(d) \subseteq E_i\}$ . We show that  $T_i = T'_i$ , i.e.  $E = \bigcup_{i=0}^{\infty} E_i$  is a default extension of  $\Delta$ .

- (a) We prove that  $T_i \subseteq T'_i$ . Let  $\phi \in T_i$  and  $d \in D$  be a default with  $cons(d) = \phi$  and  $pre(d) \subseteq E_i$ . Since  $E_i \cup T_i$  is consistent,  $\overline{\phi} \notin E$  and  $\phi \in T'_i$ .
- (b) We prove by contradiction that T'<sub>i</sub> ⊆ T<sub>i</sub>. Let φ ∈ T'<sub>i</sub> \ T<sub>i</sub> and d ∈ D(E) be a rule with cons(d) = φ and pre(d) ⊆ E<sub>i</sub>. Then φ ∉ E. By the maximality of T<sub>i</sub>, we have that E<sub>i</sub> ∪ T<sub>i</sub> ∪ {φ} is inconsistent, i.e. Cn<sub>R</sub>(E<sub>i</sub>) ∪ T<sub>i</sub> ∪ {φ} is inconsistent, i.e. E ∪ {φ} is inconsistent, i.e. E ∪ {φ} is inconsistent since E<sub>i+1</sub> ⊆ E. Then φ ∈ Cn<sub>R</sub>(E) = E and we have a contradiction.

イロト イポト イヨト イヨト