Lecture 3: Databases and Description Logics 2-AIN-144/2-IKV-131 Knowledge Reperesentation & Reasoning

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

28 Feb 2013

Entity-Relationship Schemas

Definition (ER Schema)

An ER schema S consists of pairwise disjoint sets of entity symbols \mathcal{E}_S , relationship symbols \mathcal{R}_S , attribute symbols \mathcal{A}_S , and domain symbols \mathcal{D}_S , s.t.:

- ullet each entity $E\in\mathcal{E}_{\mathcal{S}}$ is assoc. with a set of attributes from $\mathcal{A}_{\mathcal{S}}$
- ullet each attribute $A\in \mathcal{A}_{\mathcal{S}}$ is assoc. with its base domain $D^A\in \mathcal{D}_{\mathcal{S}}$
- each relationship $R \in \mathcal{R}_S$ is associated with arity n > 0, a numbered set of n entities $R:1, \ldots, R:n$ from \mathcal{E}_S and cardinality constraints $cmin_S(R:i) \in \{0, 1, \ldots\}$ and $cmax_S(R:i) \in \{1, 2, \ldots, \infty\}$ for $0 \le i \le n$
- Two IS-A relations between entities and relationships (both) denoted ≤_S (i.e., ≤_S ⊆ (E_S × E_S) ∪ (R_S × R_S))

Definition (Database state)

Given an ER schema S, a database state $\mathcal{B} = (\Delta^{\mathcal{B}}, \cdot^{\mathcal{B}})$ consists of non-empty finite set $\Delta^{\mathcal{B}}$ disjoint from all domains in \mathcal{D}_{S} , and a function $\cdot^{\mathcal{B}}$ that maps

- every entity $E\in\mathcal{E}_{\mathcal{S}}$ to $E^{\mathcal{B}}\subseteq\Delta^{\mathcal{B}}$
- every attribute $A \in \mathcal{A}_S$ to $A^{\mathcal{B}} \subseteq \Delta^{\mathcal{B}} imes \bigcup_B D^B$
- ullet every relationship $R\in \mathcal{R}_{\mathcal{S}}$ of arity n to $R^{\mathcal{B}}\subseteq (\Delta^{\mathcal{B}})^n$

Definition (Legal database state)

A database state $\mathcal B$ is legal w.r.t. an ER schema $\mathcal S$ iff

- $E_1^{\mathcal{B}} \subseteq E_2^{\mathcal{B}}$ for every two entities $E_1 \preceq_{\mathcal{S}} E_2$
- $R_1^{\mathcal{B}} \subseteq R_2^{\mathcal{B}}$ for every two relationships $R_1 \preceq_{\mathcal{S}} R_2$
- for every entity E with attribute A, and for every $e \in E^{\mathcal{B}}$ there is exactly one element in $\langle e, d \rangle \in A^{\mathcal{B}}$, and in addition $d \in D^{\mathcal{A}}$
- for each relationship R with arity n we have $R^{\mathcal{B}} \in R: 1^{\mathcal{B}} \times \cdots \times R: n^{\mathcal{B}}$
- for each relationship R of arity n, for every $1 \le i \le n$ and for every $(e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n) \in (\Delta^{\mathcal{B}})^{n-1}$ we have $cmin_{\mathcal{S}}(R:i) \le \#\{x \mid (e_1, \ldots, e_{i-1}, x, e_{i+1}, \ldots, e_n) \in R^{\mathcal{B}}\} \le cmax_{\mathcal{S}}(R:i)$

- 4 B b - 4 B b

Definition (ER schema consitence)

An ER schema S is consistent if there at least one database state B that is legal w.r.t. S.

Translating ER Schemas into DL

Martin Baláž, Martin Homola Lecture 3: Databases and Description Logics

ER Schema \mathcal{S} is called binary if all relationships in $\mathcal{R}_{\mathcal{S}}$ are of arity 2.

ER Schema S is called binary if all relationships in \mathcal{R}_S are of arity 2. In the following we will learn how to translate any binary ER schema S in an \mathcal{ALCQHI} TBox \mathcal{T}_S . ER Schema S is called binary if all relationships in \mathcal{R}_S are of arity 2. In the following we will learn how to translate any binary ER schema S in an \mathcal{ALCQHI} TBox \mathcal{T}_S .

Note: for ER schemas with higher arity one requires DL with *n*-ary relations, such as DLR (see DL Handbook).

Definition (Translating ER into DL)

Given a binary ER schema S, we define \mathcal{T}_{S} as an \mathcal{ALCQHI} TBox over vocabulary $N_{I} = \emptyset$, $N_{C} = \mathcal{E}_{S} \cup \mathcal{D}_{S}$, $N_{R} = \mathcal{R}_{S} \cup \mathcal{A}_{S}$ and the following axioms:

- $E_1 \sqsubseteq E_2$ for each two entities s.t. $E_1 \preceq_{\mathcal{S}} E_2$
- $R_1 \sqsubseteq R_2$ for each two relationships s.t. $R_1 \preceq_{\mathcal{S}} R_2$
- E ⊆ (∀A.D^A) ⊓ (=1 A.⊤) for every entity E and each attribute A associated with E
- and for each relationship R add:
 - $\exists R.\top \sqsubseteq R:1$ and $\top \sqsubseteq \forall R.R:2$
 - $R:1 \sqsubseteq \ge cmin_{\mathcal{S}}(R:2) R.R2$ if $cmin_{\mathcal{S}}(R:2) \neq 0$ and
 - $R:1 \sqsubseteq \leqslant cmax_{\mathcal{S}}(R:2) R.R2 \text{ if } cmax_{\mathcal{S}}(R:2) \neq \infty$
 - $R:2 \sqsubseteq \ge \operatorname{cmin}_{\mathcal{S}}(R:1) R^-.R1$ if $\operatorname{cmin}_{\mathcal{S}}(R:1) \neq 0$ and $R:2 \sqsubseteq \leqslant \operatorname{cmax}_{\mathcal{S}}(R:1) R^-.R1$ if $\operatorname{cmax}_{\mathcal{S}}(R:1) \neq \infty$

Theorem (Calvanese et al., 1999)

Let S be an ER schema and let T_S be the respective ALCQHITBox. There exists a legal database state of S iff there exists a finite model of T_S .

Note: Hence the problem of checking ER schema consistence reduces into finite-model satisfiability of DL TBoxes.

Using DL reasoners we can now automatically check:

- Schema consistence: is there at least one legal DB state for \mathcal{S} ?
- Entity/relationship satisfiability: is there a legal DB state with $E^{\mathcal{B}}(R^{\mathcal{B}})$ non-empty?
- Redundancy: are there two entities s.t. $E \prec_S F$ and $F \prec_S E$?
- DL also extends capabilities of ER schemas:
 - Refinement of properties along I-SA hierarchy
 - Introducing sufficient conditions
 - Definition of classes (i.e., entities) by means of complex properties