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Preliminaries

Definition (Negation normal form)

A concept C is in negation normal form (NNF) iff the complement
constructor (=) only occurs in front of atomic concept symbols
inside C.
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Preliminaries (cont.)

For every concept C there exists C' in NNF such that C = C'.
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Preliminaries (cont.)

For every concept C there exists C' in NNF such that C = C'.

We can always “push” — inwards:
e «(EMF)=-EU-F
e «(EUF)=—-EN-F
e -IdR.E=VR—-E
e VR.E=3R—-E

Since each C of finite length we eventually end up with C’ in NNF.
By structural induction C and C’ are equivalent. Ol

v
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Preliminaries (cont.)

Definition (nnf(-))

Given any concept C, we denote by nnf(C) a concept C" in NNF
st. C=C.
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Preliminaries (cont.)

Definition (Finite interpretations)

An interpretation (AZ,-) is finite iff AT is a finite set.

Definition (Tree-shaped interpretations)

An interpretation (AZ,.T) is tree-shaped iff (V, E), where V = A
and £ = {(x,y) | 3R € NR) (x,y) € R}, is a tree.
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Preliminaries (cont.)
Definition (Finite model property)

A DL L is said to have finite model property iff for every satisfiable
concept C that can be constructed in £ there exists a finite
interpretation 7 s.t. CZ # 0.

Definition (Tree model property)

A DL L is said to have tree model property iff for every satisfiable
concept C that can be constructed in £ there exists a tree-shaped
interpretation Z s.t. C # 0.

Definition (Finite tree model property)

A DL L is said to have finite tree model property iff for every
satisfiable concept C that can be constructed in £ there exists a
finite tree-shaped interpretation Z s.t. CZ # ().
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Preliminaries (cont.)

ALC has the finite tree model property.
ALC has the finite model property and the tree model property.
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Tableau Algorithm for ALC (cont.)

Definition (Completion tree)

A completion tree (CTree) is a triple T = (V, E, L) where (V, E)
is a tree and L is a labeling function s.t.

@ L(x) is a set of concepts for all x € V;

o L((x,y)) is a set of roles for all (x,y) € E.
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Tableau Algorithm for ALC (cont.)

Definition (Completion tree)

A completion tree (CTree) is a triple T = (V, E, L) where (V, E)
is a tree and L is a labeling function s.t.

@ L(x) is a set of concepts for all x € V;

o L((x,y)) is a set of roles for all (x,y) € E.

Definition (Successor, R-successor)

Given a CTree T = (V,E, L) and x,y € V we say that:
@ y is a successor of x iff (x,y) € E;
@ y is an R-successor of x iff (x,y) € E and R € L((x,y)).
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Tableau Algorithm for ALC (cont.)

Definition (Completion tree)

A completion tree (CTree) is a triple T = (V, E, L) where (V, E)
is a tree and L is a labeling function s.t.

@ L(x) is a set of concepts for all x € V;
o L((x,y)) is a set of roles for all (x,y) € E.

Definition (Successor, R-successor)

Given a CTree T = (V,E, L) and x,y € V we say that:
@ y is a successor of x iff (x,y) € E;
@ y is an R-successor of x iff (x,y) € E and R € L((x,y)).

Note: CTrees are representations of interpretations: V' corresponds
to AZ; L(x) are the concepts to which x belongs; and similarly for

L({x,y)) and (x,y).



Tableau Algorithm for ALC (cont.)

Definition (Clash)

There is a clash in a CTree T = (V, E, L) iff for some x € V and
for some concept C both C € L(x) and =C € L(x).
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Tableau Algorithm for ALC (cont.)

Definition (Clash)

There is a clash in a CTree T = (V, E, L) iff for some x € V and
for some concept C both C € L(x) and =C € L(x).

Definition (Clash-free CTree)

A CTree T = (V, E, L) is clash-free iff there if none of the nodes in
V contains a clash.

4
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Tableau Algorithm for ALC (cont.)

Algorithm (Concept satisfiability)

Input: concept C in NNF
Output: answers if C is satisfiable or not
Steps:
Q Initialize a new CTree T := ({so}, 0, {so — {C}});

@ Apply tableau expansion rules (next slide) while at least one
rule is applicable;

© Answer “C is satisfiable” if T is clash-free.
Otherwise answer “C Is unsatisfiable”.
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Tableau Algorithm for ALC (cont.)

ALC tableau expansion rules:

M-rule: if GG e L(x), xe Vand {G, G} € L(x)
then £(x) := L(x) U{G, G}

U-rule: if GU G € L(x), xe Vand {G,GINLX)=0
then either £(x) := L(x) U{G } or L(x) := L(x) U{C}

V-rule: if VR.C € L(x), x,y € V, y R-successor of x, C ¢ L(y)
then L(y) := L(y)U{C}

J-rule:  if IR.C € L(x), x € V with no R-successor y s.t. C € L(y)
then V := VU {z}, L(z):={C} and L((x,z)) := {R}
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Tableau Algorithm for ALC (cont.)

ALC tableau expansion rules:

M-rule: if GG e L(x), xe Vand {G, G} € L(x)
then £(x) := L(x) U{G, G}

U-rule: if GU G € L(x), xe Vand {G,GINLX)=0
then either £(x) := L(x) U{G } or L(x) := L(x) U{C}

V-rule: if VR.C € L(x), x,y € V, y R-successor of x, C ¢ L(y)
then L(y) := L(y)U{C}

J-rule:  if IR.C € L(x), x € V with no R-successor y s.t. C € L(y)
then V := VU {z}, L(z):={C} and L((x,z)) := {R}
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Tableau Algorithm for ALC (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satisfiability of concepts always
terminates and it is sound and complete.
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Tableau Algorithm for ALC (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satisfiability of concepts always
terminates and it is sound and complete.

For proof see:

o Attributive concept descriptions with complements.
Schmidt-Schaull, M., Smolka, G. Artificial Intelligence
48(1):1-26, 1991

@ Description logics handbook. Baader, F., et al., Cambridge
University Press, 2003

e Semantic Investigations in Distributed Ontologies. Homola,
M., PhD. thesis, Comenius University, 2010
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Reasoning w.r.t. a TBox

CCDfTC-CUD l
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Reasoning w.r.t. a TBox

CCDfTC-CUD l

Idea:

@ To assure Z |= C C D we may instead assure that
x € (=C U D) for every x € A
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Reasoning w.r.t. a TBox

CCDfTC-CUD l

Idea:

@ To assure Z = C C D we may instead assure that
x € (=C U D) for every x € A

e Add nnf(=C L D) to L(x) for every x € V
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Reasoning w.r.t. a TBox

CCDfTC-CUD l

Idea:

@ To assure Z = C C D we may instead assure that
x € (=C U D) for every x € A

e Add nnf(=C L D) to L(x) for every x € V

T-rule: f GC GeT,xeVand nnf(-G UG) ¢ L(x)
then L(x) := L(x) U {nnf(-G U &)}
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Reasoning w.r.t. a TBox (cont.)

Problem: naive use of 7T-rule may lead to infinite looping:

o Let T ={CLC3R.C}
o Is C satisfiable w.r.t. 77
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Reasoning w.r.t. a TBox (cont.)

Definition (Blocking)

Given a CTree T = (V,E, L), a node x € V is blocked if it has an
ancestor y such that

e either L(x) C L(y);
@ or y is blocked.
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ALC Tableaux Expansion Rules for TBoxes

M-rule: if GG e L(x), xe€ Vand {G, G} € L(x)
and x is not blocked
then L(x) := L(x)U{G, G}
U-rule: if GUG € L(x), x € Vand {G,G}INL(X)=10
and x is not blocked
then either £(x) := L(x) U{G} or L(x) := L(x) U{C}

V-rule:  if VR.C € L(x), x,y € V, y R-successor of x, C ¢ L(y)
and x is not blocked

then L(y) := L(y)U{C}
F-rule:  if 3R.C € L(x), x € V with no R-successor y s.t. C € L(y)
and x is not blocked
then V := VU {z}, L(z):={C} and L((x,2)) :=={R}
T-rule: f GC GeT,xeVand nnf(-G UG) ¢ L(x)

and x is not blocked
then L(x) := L(x) U{nnf(-G U &)}

Martin Balaz, Martin Homola Lecture 4: Reasoning with DL



Reasoning w.r.t. a TBox (cont.)

Algorithm (Concept satisfiability w.r.t. TBox)

Input: concept C and T in NNF
Output: answers if C is satisfiable w.r.t. T or not
Steps:
Q Initialize a new CTree T := ({so}, 0, {so — {C}});
@ Apply tableau expansion rules for TBoxes while at least one
rule is applicable;

© Answer “C is satisfiable w.r.t. T if T is clash-free.
Otherwise answer “C is unsatisfiable w.r.t. T,
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Reasoning w.r.t. a TBox (cont.)

Theorem (Correctness)

The tableaux algorithm for deciding satisfiability of concepts w.r.t.
a TBox always terminates and it is sound and complete.
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Reasoning w.r.t. TBox and ABox

Idea: Encode A into the CTree

elfa:CeA

o a’ € C% in every model T

e add node ainto T

e add C into L(a)
olfa,b:Rec A

o (a*,b%) € R in every model 7

e add nodes a,b into T

e add R into L({a, b))
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Reasoning w.r.t. TBox and ABox

Idea: Encode A into the CTree

elfa:CeA

o a’ € C% in every model T
e add node ainto T
e add C into L(a)

elfajb:Re A
o (a*,b%) € R in every model 7
e add nodes a,b into T
e add R into L({a, b))

Note: T is no longer necessarily a tree
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Reasoning w.r.t. TBox and ABox

Algorithm (Concept satisfiability w.r.t. TBox and ABox)

Input: concept C and K = (T,.A) in NNF
Output: answers if C is satisfiable w.r.t. IC or not
Steps:
@ /nitialize a CTree T as follows:
® V :={a| constant a occurs in A} U {so};
© E:={(a,b)|a,b: R € A for some role R} ;
© L(a):={nnf(E)|a: Ec A} forallac V;
L({a,b)):={R|a,b: R e A} for all {(a,b) € E;
L(so) :={C}
@ Apply tableau expansion rules for TBoxes while at least one
rule is applicable;

© Answer “C is satisfiable w.r.t. K" if T is clash-free.
Otherwise answer “C is unsatisfiable w.r.t. IC”.
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Reasoning w.r.t. TBox and ABox

Algorithm (Concept satisfiability w.r.t. TBox and ABox)

Input: concept C and K = (T,.A) in NNF
Output: answers if C is satisfiable w.r.t. IC or not
Steps:
@ /nitialize a CTree T as follows:
® V :={a| constant a occurs in A} U {so};
© E:={(a,b)|a,b: R € A for some role R} ;
© L(a):={nnf(E)|a: Ec A} forallac V;
L({a,b)):={R|a,b: R e A} for all {(a,b) € E;
L(so) :={C}
@ Apply tableau expansion rules for TBoxes while at least one
rule is applicable;

© Answer “C is satisfiable w.r.t. K" if T is clash-free.
Otherwise answer “C is unsatisfiable w.r.t. IC”.

Note: Same algorithm can be used to verify just the consistency of
IC, simply omit generation of sy and its label during the intialization.
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Reasoning w.r.t. TBox and ABox

Theorem (Correctness)

The tableaux algorithm for deciding satisfiability of concepts w.r.t.
TBox and ABox always terminates and it is sound and complete.

Martin Balaz, Martin Homola Lecture 4: Reasoning with DL



