Lecture 8: Abstract Argumentation Frameworks 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

20 Nov 2012

Example

Israeli: My government cannot negotiate with your

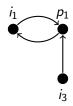
government because your government doesn't

recognize my government.

Palestinian: Your government doesn't recognize

my government either.

Israeli: But your government is a terrorist government.



Abstract Argumentation Framework

Definition (Abstract Argumentation Framework)

An abstract argumentation framework is a pair AF = (A, R) where A is a set of arguments and R is an attack relation.

An argument A attacks an argument B iff $(A, B) \in \mathcal{R}$. An set S of arguments attacks an argument B iff B is attacked by an argument in S.

Example (Abstract Argumentation Framework)

Let $AF = (A, \mathcal{R})$ be an argumentation framework where $A = \{a, b, c, d, e\}$ and $\mathcal{R} = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}.$

Conflict Freeness and Admissibility

Definition (Conflict-Free)

A set S of arguments is conflict-free if there are no arguments A and B in S such that A attacks B.

Definition (Acceptability)

An argument A is acceptable with respect to a set S of arguments (resp. S defends A) iff each argument B attacking A is attacked by S.

Definition (Admissibility)

A conflict-free set S of arguments is admissible iff each argument in S is acceptable with respect to S (is defended by S).

Extensions

Definition (Complete Extension)

An admissible set S of arguments is called complete extension iff each argument acceptable with respect to S belongs to S.

Definition (Grounded Extension)

The grounded extension is the least complete extension.

Definition (Preferred Extension)

A preferred extension is a maximal complete extension.

Definition (Stable Extension)

A conflict free set S of arguments is a stable extension iff S attacks each argument which does not belong to S.

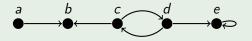
Properties

Proposition

Let AF be an abstract argumentation framework. Then

- Stable(AF) \subseteq Preferred(AF) \subseteq Complete(AF)
- Grounded(AF) \subseteq Complete(AF)

Example (Continued)



```
\begin{array}{lll} \mathsf{Admissible}(AF) & = & \{\emptyset, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}\} \\ \mathsf{Complete}(AF) & = & \{\{a\}, \{a, c\}, \{a, d\}\} \\ \mathsf{Grounded}(AF) & = & \{\{a\}\} \\ \mathsf{Preferred}(AF) & = & \{\{a, c\}, \{a, d\}\} \\ \mathsf{Stable}(AF) & = & \{\{a, d\}\} \end{array}
```

Characteristic Function

Definition (Characteristic Function)

The characteristic function $F_{AF} \colon 2^{\mathcal{A}} \mapsto 2^{\mathcal{A}}$ of an abstract argumentation framework $AF = (\mathcal{A}, \mathcal{R})$ is defined as follows:

$$F_{AF}(S) = \{A \in \mathcal{A} \mid S \text{ defends } A\}$$

Definition (Iteration of F_{AF})

The iteration F_{AF}^{i} of the characteristic function F_{AF} is defined as follows:

$$\begin{array}{rcl} F_{AF}^{0} & = & \emptyset \\ F_{AF}^{i+1} & = & F_{AF}(F_{AF}^{i}) \\ F_{AF}^{\infty} & = & \bigcup_{i>0} F_{AF}^{i} \end{array}$$

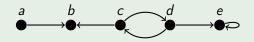
Properties

Proposition

A conflict-free set S of arguments is

- **1** admissible iff S is a post-fixpoint of F (i.e. $S \subseteq F(S)$)
- 2 complete extension iff S is a fixpoint of F (i.e. S = F(S))
- grounded extension iff S is the least fixpoint of F
- preferred extension iff S is a maximal fixpoint of F

Example (Continued)



$$F^0 = \emptyset$$

 $F^1 = F(F^0) = F(\emptyset) = \{a\}$
 $F^2 = F(F^1) = F(\{a\}) = \{a\} = F^1$

Computation of Grounded Extension

Definition (Finitary Argumentation Framework)

An abstract argumentation frametowk AF = (A, R) is finitary iff for each argument A, there exist only finitely-many arguments which attack A.

Proposition

Let S be the grounded extension of an argumentation framework AF. Then

- $\bullet F_{AF}^{\infty} \subseteq S$
- ② If AF is finitary then $S \subseteq F_{AF}^{\infty}$

Labelings

Definition (Labeling)

A labeling for an abstract argumentation framework $AF = (A, \mathcal{R})$ is a function $\mathcal{L} \colon \mathcal{A} \mapsto \{\mathsf{In}, \mathsf{Out}, \mathsf{UnDec}\}$. We define

$$\begin{array}{rcl} \mathsf{In}(\mathcal{L}) &=& \{A \in \mathcal{A} \mid \mathcal{L}(A) = \mathsf{In}\} \\ \mathsf{Out}(\mathcal{L}) &=& \{A \in \mathcal{A} \mid \mathcal{L}(A) = \mathsf{Out}\} \\ \mathsf{UnDec}(\mathcal{L}) &=& \{A \in \mathcal{A} \mid \mathcal{L}(A) = \mathsf{UnDec}\} \end{array}$$

Definition (Legal Argument)

Let \mathcal{L} be a labeling for $AF = (\mathcal{A}, \mathcal{R})$. An argument A is legal iff

- if $\mathcal{L}(A) = \text{In then } \forall B \in \mathcal{A} \colon (B, A) \in \mathcal{R} \Rightarrow \mathcal{L}(B) = \text{Out}$
- if $\mathcal{L}(A) = \mathsf{Out}$ then $\exists B \in \mathcal{A} \colon (B,A) \in \mathcal{R} \land \mathcal{L}(B) = \mathsf{In}$
- if $\mathcal{L}(A) = \text{UnDec then } \exists B \in \mathcal{A} \colon (B, A) \in \mathcal{R} \land \mathcal{L}(B) \neq \text{Out}$ and $\forall B \in \mathcal{A} \colon (B, A) \in \mathcal{R} \Rightarrow \mathcal{L}(B) \neq \text{In}$

Labelings

Definition (Admissible and Complete Labeling)

A labeling \mathcal{L} is

- admissible iff all arguments in $In(\mathcal{L}) \cup Out(\mathcal{L})$ are legal.
- complete iff all arguments in $In(\mathcal{L}) \cup Out(\mathcal{L}) \cup UnDec(\mathcal{L})$ are legal.

Definition (Grounded, Preferred, and Stable Labeling)

A complete labeling $\mathcal L$ is

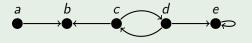
- grounded iff there does not exist a complete labeling \mathcal{L}' with $\ln(\mathcal{L}') \subset \ln(\mathcal{L})$.
- preferred iff there does not exist a complete labeling \mathcal{L}' with $\ln(\mathcal{L}') \supset \ln(\mathcal{L})$.
- stable iff $UnDec(\mathcal{L}) = \emptyset$.

Properties

Proposition

Let $AF = (A, \mathcal{R})$ be an abstract argumentation framework and S be a set of arguments. Then S is a complete, grounded, preferred, resp. stable extension of AF iff there exists a complete, grounded, preferred, resp. stable labeling \mathcal{L} for AF with $\ln(\mathcal{L}) = S$.

Example (Continued)



In Out UnDec UnDec UnDec In Out In Out UnDec In Out Out In Out